八年级讲义-分式方程培优(教师版)_第1页
八年级讲义-分式方程培优(教师版)_第2页
八年级讲义-分式方程培优(教师版)_第3页
八年级讲义-分式方程培优(教师版)_第4页
八年级讲义-分式方程培优(教师版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上环 球 雅 思 教 育 学 科 教 师 讲 义讲义编号: 副校长/组长签字: 签字日期: 学 员 编 号 : 年 级 : 八 课 时 数 :3课时学 员 姓 名 : TR版 辅 导 科 目 : 数学 学 科 教 师 :武爽课 题分式方程(培优)授课日期及时段教 学 目 的重 难 点教 学 内 容【基础知识巩固】 1. 解分式方程的基本思想:把分式方程转化为整式方程。 2. 解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方

2、程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。 3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。【典型例题分析】 例1. 解方程: 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以,得 例2. 解方程 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。 解:原方程变形为: 方程

3、两边通分,得 经检验:原方程的根是 例3. 解方程: 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。解:由原方程得: 即 例4. 解方程: 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为: 约分,得 方程两边都乘以 【重点知识巩固】 例1若解分式方程产生增根,则m的值是( ) A. B. C. D. 分析:分式方程产生的增根,是使分母为零的未知数的值。由题意得增根是:化简原方程为:把代入解得,故选择D。 例2. m为何值时,关于x的方程会产生增根? 解:方程两边都乘以,得 整

4、理,得 说明:分式方程的增根,一定是使最简公分母为零的根 例3. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树? 分析:利用所用时间相等这一等量关系列出方程。 解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵树, 由题意得: 答:甲班每小时种树20棵,乙班每小时种树22棵。 说明:在解分式方程应用题时一定要检验方程的根。例4. 轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮船在静水中的速度和

5、水流速度 分析:在航行问题中的等量关系是“船实际速度=水速+静水速度”,有顺水、逆水,取水速正、负值,两次航行提供了两个等量关系。 解:设船在静水中的速度为x千米/小时,水流速度为y千米/小时 由题意,得 答:水流速度为3千米/小时,船在静水中的速度为17千米/小时。 例1. 轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮船在静水中的速度和水流速度 分析:在航行问题中的等量关系是“船实际速度=水速+静水速度”,有顺水、逆水,取水速正、负值,两次航行提供了两个等量关系。 解:设船在静水中的速度为x千米/

6、小时,水流速度为y千米/小时 由题意,得 答:水流速度为3千米/小时,船在静水中的速度为17千米/小时。 【课后强化练习】 1. 甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度( )【解析】由已知,此人步行的路程为av千米,所以乘车的路程为千米。 又已知乘车的时间为b小时,故汽车的速度为 2. 如果关于x的方程 【解析】把方程两边都乘以 若方程有增根,则 3. 解方程:分析:方程左边很特殊,从第二项起各分式的分母为两因式之积,两因式的值都相差1,且相邻两项的分母中都有相同的因式。因此,可利用裂项,即用“互为相反数的和为0”

7、将原方程化简 解:原方程可变为 分析:用因式分解(提公因式法)简化解法 解: 因为其中的 经检验:是原方程的根。4. 求x为何值时,代数式的值等于2? 解:由已知得 的值等于2。 5计算: 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。 解:原式 6. 解方程: 分析:因为,所以最简公分母为:,若采用去分母的通常方法,运算量较大。由于故可得如下解法。 解: 原方程变为 经检验,是原方程的根。 7. 已知与互为相反数,求代数式的值。 分析:要求代数式的值,则需通过已知条件求出a、b的值,又因为,利用非负数及相反数的性质可求出a、b的值。 解:由已知得,解得 原式 把代入得:原式 8. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。 解:设这列火车的速度为x千米/时 根据题意,得 方程两边都乘以12x,得 解得 经检验,是原方程的根 答:这列火车原来的速度为75千米/时。 9. 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论