数控机床的机械结构概述_第1页
数控机床的机械结构概述_第2页
数控机床的机械结构概述_第3页
数控机床的机械结构概述_第4页
数控机床的机械结构概述_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第七章 数控机床的机械结构第一节 概述数控机床机械部分如图71,数控机床是高精度和高生产率的自动化机床,其加工过程中的动作顺序、运动部件的坐标位置及辅助功能,都是通过数字信息自动控制的,操作者在加工过程中无法干预,不能像在普通机床上加工零件那样,对机床本身的结构和装配的薄弱环节进行人为补偿,所以数控机床几乎在任何方面均要求比普通机床设计得更为完善,制造得更为精密。为满足高精度、高效率、高自动化程度的要求,数控机床的结构设计已形成自己的独立体系,在这一结构的完善过程中,数控机床出现了不少完全新颖的结构及元件。与普通机床相比,数控机床机械结构有许多要求:性能要求高电机过载能力强。要求有较长时间(1

2、30min)和较大倍数的过载能力在断续负载下,电机转速波动要小。速度响应要快,升降速时间要短。电机温升低,振动和噪音小。可靠性高,寿命长,维护容易。体积小,重量轻,与机床联接容易。图71 数控机床机械结构部分第二节 数控机床机械结构特点一主轴传动系统特点主轴传动链大大缩短,变速范围大大扩大。 1. 普通电机机械变速系统主轴部件结构如图72图72 传统机床主轴箱结构能够满足各种切削运动转矩输出的要求,但变速范围不大,由于是有级变速使切削速度的选择受到限制,而且该配置的结构较复杂,所以现在仅有少数经济型数控机床采用该配置,其它已很少采用。2.变频器交流电机12机械变速主轴部件如图73 图73 A

3、变频器加机械变速主轴箱结构变频器图73 B 变频调速示意图这种配置的结构简单、安装调试方便,且在传动上能满足转速与转矩的输出要求,但其调速范围及特性相对于交、直流主轴电机系统而言要差一些。主要用于经济型或中低档数控机床上。 3. 交、直主轴电机 主轴部件如图74 测速发电机交直流电机图74 交流直流主轴电机结构这种配置形式同上面一样,但电机是性能更好交直流主轴电机,数控系统控制加在电机上的电压,实现变速,测速发电机实现自动升降速,该电机变速范围宽,最高转速可达8000 r/min,且控制功能丰富,可满足中高档数控机床的控制要求。 4. 电主轴如图75 电主轴又称内装式主轴电机,是最近几年在数控

4、机床领域出现的将机床主轴与主轴电机融为一体的新技术,它与直线电机技术、高速刀具技术一起,将会把高速加工推向一个新时代。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置,即主轴与电机转子合为一体,其优点是主轴部件结构紧凑、重量轻、惯量小,可提高启动、停止的响应特性,利于控制振动和噪声。转速高,目前最高可达200000 r/min。其缺点是电机运转产生的振动和热量将直接影响到主轴。图75 电主轴示意图5. 主轴轴承寿命大大提高 滚动轴承,滑动轴承,陶瓷轴承,磁悬浮轴承,寿命大大提高,转速从3000 rpm上升到10000 rpm,3000

5、0 rpm,到200000 rpm。二对数控机床进给系统要求为确保数控机床进给系统的传动精度和工作平稳性等,在设计机械传动装置时,提出如下要求。1.高的传动精度与定位精度数控机床进给传动装置的传动精度和定位精度对零件的加工精度起着关键性的作用,对采用步进电动机驱动的开环控制系统尤其如此。无论对点位、直线控制系统,还是轮廓控制系统,传动精度和定位精度都是表征数控机床性能的主要指标。2宽的进给调速范围 伺服进给系统在承担全部工作负载的条件下,应具有很宽的调速范围,以适应各种工件材料、尺寸和刀具等变化的需要,工作进给速度范围可达30006000mm/min。为了完成精密定位,伺服系统的低速趋近速度达

6、0.1mm/min;为了缩短辅助时间,提高加工效率,快速移动速度应高达15m/min。在多坐标联动的数控机床上,合成速度维持常数,是保证表面粗糙度要求的重要条件;为保证较高的轮廓精度,各坐标方向的运动速度也要配合适当;这是对数控系统和伺服进给系统提出的共同要求。3.响应速度要快所谓快速响应特性是指进给系统对指令输入信号的响应速度及瞬态过程结束的迅速程度,即跟踪指令信号的响应要快;定位速度和轮廓切削进给速度要满足要求;工作台应能在规定的速度范围内灵敏而精确地跟踪指令,进行单步或连续移动,在运行时不出现丢步或多步现象。进给系统响应速度的大小不仅影响机床的加工效率,而且影响加工精度。设计中应使机床工

7、作台及其传动机构的刚度、间隙、摩擦以及转动惯量尽可能达到最佳值,以提高进给系统的快速响应特性。3.无间隙传动进给系统的传动间隙一般指反向间隙,即反向死区误差,它存在于整个传动链的各传动副中,直接影响数控机床的加工精度;因此,应尽量消除传动间隙,减小反向死区误差。设计中可采用消除间隙的联轴节及有消除间隙措施的传动副等方法。4.稳定性好、寿命长稳定性是伺服进给系统能够正常工作的最基本的条件,特别是在低速进给情况下不产生爬行,并能适应外加负载的变化而不发生共振。稳定性与系统的惯性、刚性、阻尼及增益等都有关系,适当选择各项参数,并能达到最佳的工作性能,是伺服系统设计的目标。所谓进给系统的寿命,主要指其

8、保持数控机床传动精度和定位精度的时间长短,及各传动部件保持其原来制造精度的能力。设计中各传动部件应选择合适的材料及合理的加工工艺与热处理方法,对于滚珠丝杠和传动齿轮,必须具有一定的耐磨性和适宜的润滑方式,以延长其寿命。6使用维护方便数控机床属高精度自动控制机床,主要用于单件、中小批量、高精度及复杂件的生产加工,机床的开机率相应就高,因此,进给系统的结构设计应便于维护和保养,最大限度地减小维修工作量,以提高机床的利用率。三对数控机床进给系统的特点(一) 主轴脉冲编码器代替了螺纹传动链,传动链大大缩短,如图76步进电机 H 数控机床控制系 统 图76 数控车床加工螺纹传感器代替进给传动链 主轴脉冲

9、编码器 (二) 采用特殊导轨,摩擦力大大降低尽量采用低摩擦导轨。导轨按摩擦性质分为:1滑动导轨 这种导轨副之间的摩擦为滑动摩擦的导轨,按摩擦状态又分为静压导轨和动压导轨。静压是区别于动压的,动压是部件在运动时产生的承载油膜,而静压则不同,是利用外界油压的作用来承载的,需要将高压油用泵打入到工作部位,才能起承载作用。利用外界的油压作用在导轨与摩擦副之间产生静压油膜,使活动部件浮起,即导轨与摩擦副之间不产生直接的接触。因此摩擦和磨损都很小。这里注意滚动轴承,滑动轴承原理。2滚动导轨这种导轨副之间的摩擦为滚动摩擦的导轨,以减小摩擦力,如图77。A 闭环伺服系统电机B 滚柱导轨B 滚珠导轨图77 数控

10、机床导轨3贴塑导轨图3-2-66 聚四氟乙烯导轨带及导轨专用胶1-成卷的贴塑导轨 2-剪裁成条状待贴的贴塑导轨 3-A、B组分导轨胶 4-B组分桶装导轨胶1234图3-2-67 把混合好的导轨胶涂在大拖板底面的平导轨和V型导轨表面上并贴贴塑导轨图3-2-68 将粘贴着贴塑导轨的大拖板按放在床身导轨上,中间垫薄纸薄纸贴塑导轨在滑动导轨面处采用贴塑导轨板,它是用耐磨氟氢软带做成的,使进给系统的刚度,摩擦阻尼系数静、动态特性处于最佳状态,有效减少导轨面磨损,廷长机床使用寿命。(三) T型丝杠图6-1-17 原CA6140车床X坐标T型丝杠结构组件1-T型丝杠座,固定在大拖板上 2-T型丝杠 3、5-

11、T型丝母 4-消隙斜铁 6、7-M8内六角螺栓 8-中拖板与丝母联接座及其专用螺栓13452678(四) 采用滚珠丝杠特点滚珠丝杠副是一种把旋转运动转化为直线运动的传动机构,在螺旋槽的丝杠螺母间装有滚珠作为中间传动件,以减少摩擦,如图7-14所示。图中丝杠和螺母上都磨有圆弧形的螺旋槽,丝杠与螺母之间基本上为滚动摩擦。为了防止滚珠从螺母中滚出来,在螺母的螺旋槽两端设有反向器使滚珠排成封闭状态,使滚珠能循环流动。根据反向器结构不同,滚珠丝杠分为内循环和外循环两种结构。滚珠丝杠副的特点是:1. 传动效率高,摩擦损失小。滚珠丝杠副的传动效率0.920.96,比T型丝杠提高34倍。2给予适当预紧,可消除

12、丝杠和螺母的螺纹间隙,反向时就可以消除空行程死区,定位精度高,刚度好。3运动平稳,无爬行现象,传动精度高。4运动具有可逆性,可以从旋转运动转换为直线运动,也可以从直线运动转换为旋转运动,即丝杠和螺母都可以作为主动件。5磨损小,使用寿命长。6制造工艺复杂。滚珠丝杠和螺母等元件的加工精度要求高,表面粗糙度也要求高,故制造成本高。7不容易自锁,特别是对于垂直丝杠,由于重力的作用,需加制动力自锁。(四)内循环、外循环滚珠丝杠结构安装如图781内循环、外循环滚珠丝杠结构如图78图78 A 外循环滚珠丝杠结构示意图图78 B 内循环滚珠丝杠结构示意图2内循环、外循环滚珠丝杠结构安装与反向间隙调整图79 A

13、 双螺母调整反向间隙法: 1、2为丝母,3为平键,4为调整反向间隙螺母图79 B 双螺母垫片调整反向间隙法:1、2为丝母,3为丝母座,4为调整反向间隙垫片图79 C双螺母差齿调整反向间隙法:1、2为丝母,3,4为内齿轮在两个螺母的凸缘上各制有圆柱齿轮,两者齿数相差一个齿,并装入内齿圈中,内齿圈用螺钉或定位销固定在套筒上。调整时,先取下两端的内齿圈,当两个滚珠螺母相对于套筒同方向转动相同齿数时,一个滚珠螺母对另一个滚珠螺母产生相对角位移,两个丝母轴向产生相对位移,达到消除间隙并施加预紧力的目的。设丝杠螺距P,1、2丝母齿数Z1、Z2,则两个丝母均转过一个齿时轴向位移之差为: (71)当Z1=99

14、,Z2=100,P=6毫米时,微米,精度很高。图79 D 两螺母中间加垫片调整反向间隙法3滚珠丝杠的拆装、清洗、维修(五)采用特殊齿轮结构,消除齿轮反向间隙如图7101采用双片齿轮错齿法,消除齿轮反向间隙,如图710 A图710 A 1、2为双片齿轮,3为拉簧,4为销子,5,6为螺栓螺母 动画演示:2.采用轴向垫片错齿消除斜齿轮反向间隙,如图710 B图710 B 加工齿轮时将两个齿轮中间垫厚为t的垫片一起加工,装配时垫片测量反向间隙,垫片厚度增大为cos。1、2为两个斜齿轮,3为垫片厚度t,4为螺旋角3.采用轴向压簧错齿消除斜齿轮反向间隙,如图710 C图710 C 加工齿轮时将两个齿轮中间

15、垫厚为t的垫片一起加工,装配时加轴向压簧使两个斜齿轮错开齿,与齿轮6双面接触,消除反向间隙。1、2为两个斜齿轮,3为压簧,4螺母预紧,5为轴,6为宽齿轮4.采用轴向压簧错齿消除斜齿轮反向间隙,如图710 D图710 D 锥齿轮1加轴向弹簧3,产生轴向推力,使1,2两个锥齿轮紧密啮合,消除反向间隙。1、2为两个锥齿轮,3为压簧,4螺母预紧,5为轴,5.锥齿轮轴向垫片消除反向间隙法,如图710 E图710 E 锥齿轮1和2是轴平行,3是锥齿轮2的垫片,减小垫片3的厚度使锥齿轮1和2啮合紧密,消除反向间隙。6.齿轮齿条啮合齿侧隙消除法,如图710 F图710 F 齿轮4和2是同轴齿轮,齿轮3和5是同

16、轴齿轮,齿轮4和5与齿条啮合,施力器7使齿轮1与齿轮2和3同时啮合,产生左右推力,使齿轮4和齿轮5与齿条两个方向啮合紧密,消除反向间隙。这样齿轮4或5就可以是电机轴上的齿轮。(六)采用偏心套,以减小齿轮中心距消除齿轮反向间隙如图711图711 A 采用偏心套减小齿轮中心距消除齿轮反向间隙动画演示:图711 B 采用偏心套减小齿轮中心距消除齿轮反向间隙以上第19次课(七)数控机床反向间隙 1反向间隙的概念图712 反向间隙的概念电机轴上键间隙,齿轮反向间隙,丝杠丝母反向间隙,工作台装配机械间隙对工作台的综合影响。2反向间隙的测量当脉冲当量为1丝或0.5丝时,在工作台上按百分表,用点动功能向Z方向

17、点动至表针转动;然后反方向点动,至表针刚开始转动时点动的次数减1与脉冲当量的乘积即为反向间隙。如Z方向点动至表针转动,然后点动到第5次表针才转动,脉冲当量为1丝,则反向间隙为(51)次×1丝4丝。为从电机轴主动到齿轮到被动齿轮到丝杠丝母到工作台的综合间隙。若只测量从电机轴主动到齿轮到被动齿轮到丝杠丝母的反向间隙,如图712黑色表的测量法。3反向间隙的消除(1)电机轴上联接主动齿轮的键的反向间隙 换键,过渡小过盈配合。(2) 被动齿轮与键联接的反向间隙换键,过渡小过盈配合。(3) 两个齿轮反向间隙 按前述消隙原理维修。(4) 丝杠丝母反向间隙按前述消隙原理维修,增大垫片厚度。(八)采用

18、同步齿型带消除反向间隙如图713图713 采用同步齿型带消除反向间隙(九)数控机床反向间隙大小 经济型数控机床脉冲当量为0.005毫米0.01毫米,反向间隙03丝,如数控车床;线切割机床脉冲当量为0.001毫米,反向间隙05微米,高档型数控机床脉冲当量为0.001毫米,反向间隙01丝,如加工中心机床。(十)数控机床反向间隙的软件消除 1控制程序消除法 如第四章讲的0000号引导程序 0000 N0010 L0234 加工0234号程序 N0020 G00 F3500 空运行进给量3500毫米/分钟N0030 U0.02 W0.03 S99 X丝杠反向间隙1丝,因脉冲当量为0.005米,Z丝杠反

19、向间隙为3丝,因脉冲当量为0.01毫米N0040 U122.38 W48.03 T01 第2把刀相对第1把刀的刀补量 N0050 U41.88 W25.36 T02 第3把刀相对第1把刀的刀补量N0060 U35.72 W12.79 T03 第4把刀相对第1把刀的刀补量 这时要注意对刀和第一刀走向要一致,机械确实不要走反向间隙,控制程序也不走反向间隙;否则,机械走了反向间隙,而控制程序因没有换向就不走反向间隙,就出现误差,如图714所示:201510161820ZX50ABCDO5SP图714 数控车削零件对刀注意反向间隙试切时要向X和Z方向试切,加工程序ABCDA,这样加工尺寸就能保证。如果

20、对刀时走Z,加工时走Z机械上就客观上走了反向间隙。 2加工程序消除法实例图715:车端面,外圆的路线:图715方案差,因反向间隙引起直径有误差方案好,克服了反向间隙,直径没有误差实例图716线切割加工:图7-16 所示为加工起点与终点错开的不重合现象,图7-16 (a) 逆时针加工路线为OABCDEFG,是加工图形起点A在右边终点G在左边错开的不重合;图7-16 (b)顺时针加工路线也为OABCDEFG,也是起点A在右边终点G在左边错开的不重合。FECBAOGDAOGDCBFE图716 (A)凹模 图716(B)凸模改为如下图717方案,即克服不重和问题。FECBOADAODCBFE图717 (A)凹模 图717(B)凸模见论文: 赵庆志 李玉美 经济型数控车床机械间隙误差的程序补偿方法 机械制造 1996年第4期 P2022赵庆志等 线切割加工起点和终点不重合误差分析与对策 制造技术与机床 2006年第2期 P-79第三节 数控车床转位刀架原理转位刀架作用:工序集中,一次定位加工多个表面,精

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论