版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初高中数学公式大全.txt只要你要,只要我有,你还外边转什么阿老实在我身边待着就行了。听我的就是,问那么多干嘛,我在你身边,你还走错路!跟着我!不能给你幸福是我的错,但谁让你不幸福,我TMD去砍了他初高中数学公式大全初高中知识 2009-10-10 17:15 阅读335 评论2 字号: 大大 中中 小小 初中几何定理,推理及公式大全1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8
2、 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS)
3、 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶
4、角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和
5、一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三
6、角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平
7、分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,
8、四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也
9、相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性质 如果ab=cd=mn(b+d+n0),那么 (a+c+m
10、)(b+d+n)=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直
11、角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的
12、余切值等 于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆。 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
13、111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的
14、圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121直线L和圆O相交 (直线到圆心的距离)dr (圆半径)直线L和圆O相切 d=r 直线L和圆O相离 dr 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆
15、心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 1
16、34如果两个圆相切,那么切点一定在连心线上 135两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-rdR+r(Rr) 两圆内切 d=R-r(Rr) 两圆内含dR-r(Rr) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)×180°n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角
17、三角形 141正n边形的面积Sn=pnrn2 p表示正n边形的周长 142正三角形面积3a4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°n=360°化为(n-2)(k-2)=4 144弧长计算公式:L=n兀R180 145扇形面积公式:S扇形=n兀R2360=LR2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) 几何公式: 1、多边形内角和公式:n边形的内角和等于(n2)180o(n3,n是正整数),外角和等于360o 2、平行线分线段成比例定理: (1)平行线分线
18、段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 如图:abc,直线l1与l2分别与直线a、b、c相交与点A、B、C D、E、F,则有:(图1) (2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。 如图:ABC中,DEBC,DE与AB、AC相交与点D、E,则有:(图2) (图3) 3、直角三角形中的射影定理:如图:RtABC中,ACB90o,CDAB于D,则有:(图4)(图5) 4、圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的-任意两个性质:经过圆心;垂直弦;平分弦;平分弦所对的劣弧;-平分弦所对的优弧,那么这条直线就具有另外三个
19、性质注:具备,时,弦不能是直径(2)两条平行弦所夹的弧相等(3)圆心角的度-数等于它所对的弧的度数(4)一条弧所对的圆周角等于它所对的圆心角的一半(5)圆周-角等于它所对的弧的度数的一半(6)同弧或等-弧所对的圆周角相等(7)在同圆或等圆中,相等的圆周角所对的弧相等(8)90o的圆周角-所对的弦是直径,反之,直径所对的圆周角是90o,直径是最长的弦(9)圆内接四边形的对角互补 5、三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心三角形的内心就是三内角角平分线 的交点三-角形的外接圆的圆心叫做三角形的外心三角形的外心就是三边中垂线的交点常见结论:(1)RtABC的三条边分别为:a、b、c
20、(c为斜边),则它的内切圆的半径- (图6);(2)ABC的周长为(图7-0),面积为S,其内切圆的半径为r,则(图7);6、弦切角定理及其推论:(1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。如图:PAC为弦切角。(2)弦切角定理:弦切角度数等于它所夹的弧的度数的一半。如果AC是O的弦,PA是O的切线,A为切点,则(图8)推论:弦切角等于所夹弧所对的圆周角(作用证明角相等)如果AC是O的弦,PA是O的切线,A为切点,则(图9)(图10)7、相交弦定理、割线定理、切割线定理:相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等。 如图,即:PA·PB
21、 = PC·PD割线定理 :从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段长的积相等。如图,即:PA·PB = PC·PD切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。如图,即:PC2 = PA·PB(图11)8、面积公式:S正-(图12)-×(边长)2- S平行四边形底×高S菱形底×高-(图13)-×(对角线的积),(图14)-S圆R2l圆周长2R弧长L-(图15)- (图16)S圆柱侧底面周长×高2rh,S全面积S侧S底2rh2r2S圆锥侧- -
22、×底面周长×母线rb, S全面积S侧S底rbr2数学公式1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数如:3,- (图17)-,0.231,0.737373,-(图18)-,-(图19)-无限不环循小数叫做无理数-如:,(图20)-,0.1010010001(两个1之间依次多1个0)有理数和无理数统称为实数2、-绝对值:a0-(图21)-丨a丨a;-a0(图21)-丨a丨a如:丨-(图22)-丨-(图22)-;丨3.14丨3.143、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个-近似数的有效数字如:0
23、.05972精确到0.001得0.060,结果有两个有效数字6,04、把一个数写成±a×10n-的形式(其中1a10,n是整数),这种记数法叫做科学记数法如:407004.07×105,0.000043-4.3×1055、乘法公式(反过来就是因式分解的公式):(ab)(ab)a2b2(a±b)2a2±2abb2-(ab)(a2abb2)a3b3(ab)(a2abb2)a3b3;a2b2(ab)22ab,(ab)2(ab)24ab6、幂的运算性质:-am×anamnam÷anamn(am)namn(ab)nanbn(
24、(图23)-)n-n-an(图24),特别:(-(图23)-)n(-(图25)-)n-a01(a0)如:a3×a2a5,a6÷a2a4,(a3)2a6,(3a3-)327a9,(3)1-(图26)-,52-(图27)-(图28)-,-((图29)-)2(-(图30)-)2-(图31)-,(3.14)o1,-(-(图22)(图18)-)017、二次根式:-(-(图32)-)2a-(a0),-(图34)-丨a丨,-(图35-0)-(图32)-×-(图33)-,-(图35)-(图36)-(a0,b0)-如:-(3-(图20)-)245-(图37)-6a0时,-(图38)
25、-a-(图33)-(图39)-的平方根4的平方根±2(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2bxc0:求根公式是x-(图40)-,其中-b24ac叫做根-的判别式当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当-0时,方程没有实数根注意:当0时,方程有实数根若方程有两个实数根x1和x2,并且二次三项式ax2bxc可分解为a(xx1)(xx2)以a和b为根的一-元二次方程是-x2(ab)xab09、一次函数ykxb(k0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距)当k0时,y-随x的增大而增大(直线从左向右
26、上升);当k0时,y随x的增大而减小(直线从左向右下降)特别:当b0时,ykx-(k0)又叫做正比例函数(y与x成正比例),图象必过原点10、反比例函数y- -(k0)的图象叫做双曲线当k0时,双曲线在一、三象限(在每一象限内,从左向右降);当k0时,双曲线在二、四象限(在每一象限内,从左向右上升)因此,它的增减性与一次函数相反11、统计初步:(1)概念:所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数将一组数据按大小顺序排列,把处在最中间的一个数(
27、或两个数的平均数)叫做这组数据的中位数(2)公式:设有n个数-x1,x2,xn-,那么:平均数为:(图41);极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;方差:数据(图44),则 =(图42)标准差:方差的算术平方根.数据(图45),则 =(图43)一组数据的方差越大,这组数据的波动越大,越不稳定。12、频率与概率:(1)频率= ,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。(2)概率如果用P表示一个事件A发生的概率,则0P(A)1;P(必然事件)=1;P(不可能事
28、件)=0;在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。大量的重复实验时频率可视为事件发生概率的估计值;13、锐角三角函数:设A是RtABC的任一锐角,则A的正弦:sinA -,A的余弦:cosA- -,A的正切:tanA- 并且sin2Acos2A10sinA1,-0cosA1,-tanA0A越大,A的正弦和正切值越大,余弦值反而越小余角公式:sin(90oA)cosA,-cos(90oA)sinAh l 特殊角的三角函数值:sin30ocos60o- -,sin45ocos45o- -,sin60ocos30o- -, tan30o ,tan45o1,
29、tan60o- 斜坡的坡度:-i- - -设坡角为,则itan- -14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,b),P关于y轴对称的点为P2(a,b),关于原点对称的点为P3(a,b).(2)坐标平移:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(ah,b),向右平移h个单位,坐标变为P(ah,b);向上平移h个单位,坐标变为P(a,bh),向下平移h个单位,坐标变为P(a,bh).如:点A(2,1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1).15、二次函数的有关知识:1.定义:一般地,如果
30、是常数, ,那么 叫做 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点. 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;相等,抛物线的开口大小、形状相同. 平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .几种特殊的二次函数的图像特征如下:函数解析式 开口方向 对称轴 顶点坐标 当 时开口向上当 时开口向下 ( 轴) (0,0) ( 轴) (0, ) ( ,0) ( , ) ( ) 4.求抛物线的顶点、对称轴的方法 (1)公式法: ,顶点是 ,对称轴是直线 . (2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
31、(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。 若已知抛物线上两点 (及y值相同),则对称轴方程可以表示为: 9.抛物线 中, 的作用 (1) 决定开口方向及开口大小,这与 中的 完全一样. (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线,故: 时,对称轴为 轴; (即 、 同号)时,对称轴在 轴左侧; (即 、 异号)时,对称轴在 轴右侧. (3) 的大小决定抛物线 与 轴交点的位置. 当 时, ,抛物线 与 轴有且只有一个交点(0, ): ,抛物线经过原点; ,与 轴交于正半轴; ,与 轴交于负半轴. 以上三点中,当结论和条
32、件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .11.用待定系数法求二次函数的解析式 (1)一般式: .已知图像上三点或三对 、 的值,通常选择一般式. (2)顶点式: .已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与 轴的交点坐标 、 ,通常选用交点式: .12.直线与抛物线的交点 (1) 轴与抛物线 得交点为(0, ). (2)抛物线与 轴的交点 二次函数 的图像与 轴的两个交点的横坐标 、 ,是对应一元二次方程的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点 ( ) 抛物线与 轴相交; 有一个交点(顶点在 轴上) ( )
33、抛物线与 轴相切; 没有交点 ( ) 抛物线与 轴相离. (3)平行于 轴的直线与抛物线的交点 同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是 的两个实数根. (4)一次函数 的图像 与二次函数 的图像 的交点,由方程组 的解的数目来确定:方程组有两组不同的解时 与 有两个交点; 方程组只有一组解时 与 只有一个交点;方程组无解时 与 没有交点. (5)抛物线与 轴两交点之间的距离:若抛物线 与 轴两交点为 ,则 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+
34、ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos
35、(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) si
36、n(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB
37、=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2
38、n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧
39、面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2
40、h高中数学公式总结1集合元素具有确定性互异性无序性 2集合表示方法列举法 描述法 韦恩图 数轴法 3集合的运算 A(BC)=(AB)(AC) Cu(AB)=CuACuB Cu(AB)=CuACuB 4集合的性质 n元集合的子集数:2n 真子集数:2n-1;非空真子集数:2n-2 高中数学概念总结 一、 函数 1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。 二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。 2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图
41、象是 3、 函数 的大致图象是 由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。 二、 三角函数 1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。 2、同角三角函数的关系中,平方关系是: , , ; 倒数关系是: , , ; 相除关系是: , 。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: , = , 。 4、 函数 的最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,
42、凡是该图象与直线 的交点都是该图象的对称中心。 5、 三角函数的单调区间: 的递增区间是 ,递减区间是 ; 的递增区间是 ,递减区间是 , 的递增区间是 , 的递减区间是 。 6、 7、二倍角公式是:sin2 = cos2 = = = tg2 = 。 8、三倍角公式是:sin3 = cos3 = 9、半角公式是:sin = cos = tg = = = 。 10、升幂公式是: 。 11、降幂公式是: 。 12、万能公式:sin = cos = tg = 13、sin( )sin( )= , cos( )cos( )= = 。 14、 = ; = ; = 。 15、 = 。 16、sin180=
43、 。 17、特殊角的三角函数值: 0 sin 0 1 0 cos 1 0 0 tg 0 1 不存在 0 不存在 ctg 不存在 1 0 不存在 0 18、正弦定理是(其中R表示三角形的外接圆半径): 19、由余弦定理第一形式, = 由余弦定理第二形式,cosB= 20、ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则: ; ; ; ; ; 21、三角学中的射影定理:在ABC 中, , 22、在ABC 中, , 23、在ABC 中: 24、积化和差公式: , , , 。 25、和差化积公式: , , , 。 三、 反三角函数 1、 的定义域是-1,1,值域是 ,奇函
44、数,增函数; 的定义域是-1,1,值域是 ,非奇非偶,减函数; 的定义域是R,值域是 ,奇函数,增函数; 的定义域是R,值域是 ,非奇非偶,减函数。 2、当 ; 对任意的 ,有: 当 。 3、最简三角方程的解集: 四、 不等式 1、若n为正奇数,由 可推出 吗? ( 能 ) 若n为正偶数呢? ( 均为非负数时才能) 2、同向不等式能相减,相除吗 (不能) 能相加吗? ( 能 ) 能相乘吗? (能,但有条件) 3、两个正数的均值不等式是: 三个正数的均值不等式是: n个正数的均值不等式是: 4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是 6、 双向不等式是: 左边在 时取
45、得等号,右边在 时取得等号。 五、 数列 1、等差数列的通项公式是 ,前n项和公式是: = 。 2、等比数列的通项公式是 , 前n项和公式是: 3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。 4、若m、n、p、qN,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。 5、 等差数列 中,若Sn=10,S2n=30,则S3n=60; 6、等比数列 中,若Sn=10,S2n=30,则S3n=70; 六、 复数 1、 怎样计算?(先求n被4除所得的余数, )
46、 2、 是1的两个虚立方根,并且: 3、 复数集内的三角形不等式是: ,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。 4、 棣莫佛定理是: 5、 若非零复数 ,则z的n次方根有n个,即: 它们在复平面内对应的点在分布上有什么特殊关系? 都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。 6、 若 ,复数z1、z2对应的点分别是A、B,则AOB(O为坐标原点)的面积是 。 7、 = 。 8、 复平面内复数z对应的点的几个基本轨迹: 轨迹为一条射线。 轨迹为一条射线。 轨迹是一个圆。 轨迹是一条直线。 轨迹有三种可能情
47、形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b) 当 时,轨迹为两条射线;c) 当 时,轨迹不存在。 七、 排列组合、二项式定理 1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类独立;乘法分步,步步相关。 2、排列数公式是: = = ; 排列数与组合数的关系是: 组合数公式是: = = ; 组合数性质: = + = = = 3、 二项式定理: 二项展开式的通项公式: 八、 解析几何 1、 沙尔公式: 2、 数轴上两点间距离公式: 3、 直角坐标平面内的两点间距离公式: 4、 若点P分有向线
48、段 成定比,则= 5、 若点 ,点P分有向线段 成定比,则:= = ; = = 若 ,则ABC的重心G的坐标是 。 6、求直线斜率的定义式为k= ,两点式为k= 。 7、直线方程的几种形式: 点斜式: , 斜截式: 两点式: , 截距式: 一般式: 经过两条直线 的交点的直线系方程是: 8、 直线 ,则从直线 到直线 的角满足: 直线 与 的夹角满足: 直线 ,则从直线 到直线 的角满足: 直线 与 的夹角满足: 9、 点 到直线 的距离: 10、两条平行直线 距离是 11、圆的标准方程是: 圆的一般方程是: 其中,半径是 ,圆心坐标是 思考:方程 在 和 时各表示怎样的图形? 12、若 ,则
49、以线段AB为直径的圆的方程是 经过两个圆 , 的交点的圆系方程是: 经过直线 与圆 的交点的圆系方程是: 13、圆 为切点的切线方程是 一般地,曲线 为切点的切线方程是: 。例如,抛物线 的以点 为切点的切线方程是: ,即: 。 注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。 14、研究圆与直线的位置关系最常用的方法有两种,即: 判别式法:>0,=0,<0,等价于直线与圆相交、相切、相离; 考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。 15、抛物线标准方程的四种形式是: 16、抛物线 的焦点坐标是: ,准线方程是: 。 若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: 。 17、椭圆标准方程的两种形式是: 和 。 18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 。其中 。 19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 。 20、双曲线标准方程的两种形式是: 和 。 21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度硬面堆、药芯焊线战略市场规划报告
- 年度钟表与计时仪器竞争策略分析报告
- 二零二五年度特种吊车租赁与运输服务合同3篇
- 二零二五版高管劳动合同样本:股权激励与竞业禁止条款3篇
- 二零二五年空调销售与节能产品认证合同3篇
- 2025年度城市绿地养护及植物配置优化合同4篇
- 2025年度私人诊所与患者之间的远程医疗服务合同
- 2024版简易协议管理软件解决方案一
- 二零二五年度新能源材料采购代理协议3篇
- 二零二四年太阳能光伏发电项目合同
- 全过程造价咨询项目保密及廉政执业措施
- 定制柜子保修合同协议书
- GB/T 42249-2022矿产资源综合利用技术指标及其计算方法
- 扶梯吊装方案
- GB/T 712-2011船舶及海洋工程用结构钢
- GB/T 26846-2011电动自行车用电机和控制器的引出线及接插件
- GB/T 18015.1-1999数字通信用对绞或星绞多芯对称电缆第1部分:总规范
- 院医学实习请假审批表
- 2020-2021学年青岛版五年级上册期末考试数学试卷(1)1
- 导师指导记录表
- 七年级数学家长会课件
评论
0/150
提交评论