有机硅电解液:安全性和高电压性能研究进展_第1页
有机硅电解液:安全性和高电压性能研究进展_第2页
有机硅电解液:安全性和高电压性能研究进展_第3页
有机硅电解液:安全性和高电压性能研究进展_第4页
有机硅电解液:安全性和高电压性能研究进展_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、有机硅电解液:安全性和高电压性能研究进展1、Background Safety issues related with Li-ion Batteries Safe electrolytes for high-voltage batteries2、Organosilicon based electrolytes High-voltage OS-based electrolytes OS-based electrolytes for Si anodes4、SummaryOutlineSafety issues of LIBs:High flammability ofcarbonate electr

2、olytes!LiFePO4 batteryNot safe enough!Safety of Lithium-Ion BatteriesSafety (abuse tolerance): When overcharged, thermalrunaway leads to fires etc. Runaway reaction caused byrelease of oxygen from cathodematerials (e.g., LiCoO2).The development of newSafe electrolyte materials!OOORRDMC: R=CH3DEC: R=

3、CH2CH3OOEC OHighVoltageCathodeMaterialsDischargepotential(V)RedoxcoupleTheoreticalCapacity(mAh/g)PotentialRange(V)LiCoPo44.82+/3+Co1673.05.1LiNiPo45.12+/3+Ni1673.05.5Li3V2(PO4)3LiMPO43.83+/4+/5+V1973.04.8Li2CoP2O74.92+/3+Cob1092.05.5Li2MnP2O74.452+/3+Mnb1102.04.7Li2NiPO4F5.12+/3+Nib1433.05.5LiNiSO4F

4、C5.25.42+/3+Ni149Es= Qcapacity * Vvoltage1. Safety!2. High-voltage Stability!J. Power Sources, 237 (2013) 229.High-voltage cathodes require compatible electrolytesElectrolyte Challenges:NSAdditivesDinitrilesIonic liquidsSulfoneFluorinated solventInorganic compoundsSulfonateestersCarboxylanhydridesPh

5、osphidesCCNNnOFCOOOOOCF3FFCF3R4N+R2OCFR1OFR1N+R2O-CF FFR1N+ R2R3O SFOOSSOOOOSOOOOSOOOOSOOSOCF3CF3F3CF3CF3CCF3OPOOOOOBOOOOOLiBOOOOFFLiElectrolyte solvents and additives for high-voltageSolventsLiBOBLiODFBCNH HCn C NLiNi0.5Mn1.5O4/Li,3.5-4.9V, 1/12 CJ Electrochem Soc, 156 (2009)A60.; 159 (2012)A370;16

6、0 (2013)A838. J Power Sources, 189 (2009) 576.Aprotic aliphatic dinitrile solventsn=3ADN, n=5 PMNn=6 SUN, n=8 SENAdvantages:Electrochemical window (7-8V)Flash point (110 , 163 forADN)Dielectric constant (20-30, 55 for SCN)Disadvantages:Poor compatibility with graphitePoor solubility of LiPF6 LiTFSI

7、(V 4.3 V, corrodes collector) LiBF4 (inferior ability, poor lowtemperature performance)J Electrochem Soc, 149 (2002)A920; J Phys Chem B, 115 (2011) 12120.Electrochem Commun, 11 (2009) 1418; 11 (2009) 1073.Sulfone-Based Electrolytes Advantages:High oxidationpotential Low flammable High melting point;

8、 Poor compatibility with graphite; Wetting problem with separatorLi4Ti5O12/1M LiPF6FEC/DMC/D2 3/4/3/LiNi0.5Mn1.5O4 (Data from ANL, USA)OFRf1Rf2OD2OFEC1 C at 55oCFluorinated Based ElectrolytesAdvantages: High oxidative stability High flash point/lowflammability (Safe) Compatible with graphiteODisadva

9、ntages: Bad performance at elevatedtemperatures (FEC) Harsh synthesis conditions/highcost1M LiPF6 EC/DEC (3/7)1M LiPF6 EC/DMC/MFA (3/3/4)F OH C C O CH3FMFA1M LiPF6 MFALiCo2/ Graphite cell (1 Ah cell); Daikindata (Japan)Fluorinated Based ElectrolytesEnergy & Environmental Science, 6 (2013) 1806;

10、Electrochem Commun, 10 (2008) 783.High Low flammability High oxidation resistance High viscosity(low conductivity & ratecapability) Poor wettingHigh costJ Power Sources, 189 (2009) 331; 225 (2013) 113; 233 (2013) 115.Mix with carbonate or other co-solventperformance Ionic Liquid Electrolytesther

11、mal stability Very low rotation barrieraround Si-O axis, (ca.0.8 KJ/mol) low linear isation energy ofthe Si-O-Si angle (1.3kJ/mol).Organosilicon (OS) Electrolytes:High ionic conductivity Non-flammability: Biocompatible Excellent wetting capability Wide liquid phase range(-40200 oC) Low viscosity- co

12、mparable withalkylcarbonates Medium wide electrochemicalwindow Very low glass transitiontemperature good thermal stabilityAlternative: Organosilicon ElectrolytesOOOOOR2R2R1R1= H, CH3R2= CH3, CH3CH2Carbonate electrolytesHighly flammable!OJ. Mater. Chem., 2008, 18(31), 3713-17; 2010, 20, 8224-26. Chem

13、. Mater. , 2007, 19, 5734-5741.Implant neuro-stimulator micro cell(27.5 3.2 mm2, 1g)Organosilicon as Safe Electrolytes1. Excellent cyclability;2. Electrochemically stable3. Nonflammable/Safe; 4. Environmental benignConventional electrolytesOS electrolytesMCMB/LiNi0.8Co0.15Al0.05O2,0.8M LiBOB OS elec

14、trolytesC/5, 3.0 to 4.0 V;100% efficiencyJ Power Sources, 228 (2013) 32; 196 (2011) 2255Electrochem Commun, 8 (2006) 429; Chem Commun, 49 (2013) 1190Progress on Organosilicon Electrolytes (Lit.) Ionic conductivity Compatibility with graphite Oxidation potential ( 4.2 V )Challenges of OSelectrolytes:

15、Compounds/cPoT/Cg-/mScm1(0)25CE/VcathodicE/VanodicEW/VSN1SN2SN3BNSTNS2.884.627.163.604.6011.612.312.815.717.3-118-111-98.4-107-1061.101.521.201.281.030.00.00.01.111.055.6015.054.494.11NCH2CH2CH2C Si O CH2CH2O CH3nCNCH2CH2Si(CH3)(3-m)(OCH2CH2OCH3)mCH3dielectric constant oxidati

16、on potential Increaseddielectric constantIncreasedoxidation potentialHighconductivityOrganosilicon Compounds with Nitrile GroupCH3Discharge Capacity (mAh/g)Efficiency (%)Potenial / VSpecific Capacity / mAhg-1Specific capacity/ mAhg-1Capacity retention (%)Specific capacity/ mAhg0140120100806010510095

17、9085803000.7C CC to 4.4V, 0.5C DC to 3.0 V274 cycles : 85.2 %LCO/OS co-solvent/Graphite50 100 150 200 250Cycle number016014012010080604020180LCO/graphite, 2.7-4.4V, 0.2CBNS / 0.4 M LiODFB+0.6 M LiPF6TNS / 0.4 M LiODFB+0.6 M LiPF6SN1 / 0.4 M LiODFB+0.6 M LiPF640 80 120 160052530030906012018015010 15

18、20Cycle number0204060100800.2 C2C1.5 C1C0.5 C0.2 CMisciblewell withcarbonateEnhancedhigh rateperformance0100 200 300 400 5006000.01.02.0-11M LiPF6 in SN11M LiPF6 in BNS/PC (4:6 in vol.)1M LiPF6 in TNSAs EO arm increase,More compatibilitywith graphite.Organosilicon Compounds with Nitrile Gro

19、up3.0Cycle numberJ. Power Sources, 254, 29-32 (2014)Coulombic Efficiency / %Specific capacity/ mAhg-102040608010008040160120Cycle number8081971009998Retention: 90.4%100 cyclesCE 99.5%LCO/graphite, 3.0-4.4 V0.5C, 143 mAhg-1Comparison with Commercial High-VoltageElectrolytesOur high-voltage OS electro

20、lyte (OS Ionic Liquids)101Comp.Viscosity(mPa.s)DielectricconstantTg()Conductivity-1(mS.cm)Oxidationpotential(V)FMSEOM221.799.5-108.51.464.951SM322.14.44-1120.9?Enhanced physical propertiesFluorinationFluorinated OS Compounds with Oligo (EO)1S3M2, J. Mater. Chem., 2010, 20, 8224; F2MSEO2M unpublished

21、 data.-1dQ/dVCap. mAh/gSpecific capacity/ mAhgCoulombic efficiency / %Potential (V vs. Li+/Li)F2MSEO2M / 1M LiPF6+0.2MLiODFB0204060804016012080200240Cycle number4.4VLCO/Li, 0.2C8010095908510090.8%95.8%4.5V0.00.1 0.2 0.3 0.40.5Graphite/Li, 0.01-3.0 V1 M LiPF6 PC:DMC:DEC:F2MSEO2M (28:35:35:2 vol.)Unpu

22、blished dataFluorinated OS Compounds with Oligo (EO)Good compatibility with1020Cycle #3040320280graphite!400360High voltage performances:LCO/C cell, 94 cycles4.4V: 96% capacity retention4.5V: 90% capacity retentionSpecific capacity (mAh/g)Current ()Efficiency (%)Potential ( V vs. Li /Li )02040608010

23、06080120100180160140200Cycle number040208060100LCO / TMOSC3GC / graphite2.7-4.4 V, C/10Highly polargroupDielectricconstant Concentrationof Li+-1012345+TMOSC3GCTEOSC3GCDSC3GCOOOOSiOOSiOSiOOOOWang JL, et al., 2013, to be submittedCarbonate Functionalized Trialkoxysilanes(RO)3Si(CH2)nOOOOR= CH3O, CH3CH

24、2O; n= 0,2,3ODielectric constant as high as37.8!220Current / A3.03.54.04.55.05.56.0320240160800Voltage / V vs. Li/Li+commerical carbonate electrolytecommerical carbonate electrolyte + 30% SN1W.E. platinumC.E. lithiumR.E. lithiumScan rate: 10 mv/s(a)OS based electrolytes for 4.4V LCO/graphite cellcom

25、mercial carbonate electrolyte: GT303 (LB303)commercial carbonate electrolyte + 30% SN1 : GT303+30%SN1-1Specific capacity/ mAhg030609012015012010080commercial carbonate electrolytecommercial carbonate electrolyte+30% SN1LCO/graphite, 3.0-4.4V 0.5CCycle numbercommercial carbonate electrolyte: GT303+ 2

26、%wt. VC+ 2%wt.PScommercial carbonate electrolyte + 30% SN1 :70% TC 4.35+ 30% SN1,0.1 M LiODFB + 1 M LiPF6, 2%wt. VC+ 2%wt.PSOS based electrolytes for 4.4V LCO/graphite cell(b) 160140-1Specific capacity/ mAhg01020304050601000.2C0.5C0.7C1C1.5Ccommerical carbonate electrolytecommerical carbonate electr

27、olyte+30% SN10.2C(c)160140120Cycle numbercommercial carbonate electrolyte: GT303+ 2%wt. VC+ 2%wt.PScommercial carbonate electrolyte + 30% SN1 :70% TC 4.35+ 30% SN1,0.1 M LiODFB + 1 M LiPF6, 2%wt. VC+ 2%wt.PSOS based electrolytes for 4.4V LCO/graphite cellElectrochemical windows Imidazolium ILs: ca.

28、4V Tertraalkylammonium ILs: ca. 6VR = (CH3)3SiCH2, (CH3)3CCH2A = N(CF3SO2)2, BF4J. Phys.Chem. B, 109, 21576(2005); 111, 4819(2007); 111, 4885(2007); Talanta, 71, 68(2007).N + N R-A+Si NN C4H9-PF6 TertraalkylPhosphonium ILs:excellent thermal stabilityElectrochim. Acta, 51, 5567(2006)Organosilicon Bas

29、ed Ionic LiquidsAdvantages Over Carbon Analogues Weake Intermolecular interactions Lower viscosity Low glass transition temperature HydrophobicX = N, P; n = 1, 3;R1=CH3, CH3CH2; R2=Alkyl, alkoxyA = BF4, PF6, TFSI, BOB, NCN2R2R2 SiR2(CH2)nXR1(OCH2CH3)2-AOOOOOOOF3C S N S CF3O OTFSIBO OBOBAnion structu

30、res:US 2010029970 A1; WO 2009045609 A1; CHN Pat: CN201010265833.2Organosilicon Based Ionic LiquidsMass Retaintion (%)Current ()OSIonic LiquidSN1IL-TFSIAN1IL-TFSICETMA-TFSImS/cm1.354.291.10cp125.436.0-TdecoC362325329EanodicV0.000.651.30EcathodicV5.395.305.78Novel Organosilicon Based Ionic Liquids0125

31、63 4Potential (V)SN1IL-TFSIAN1IL-TFSICEN1IL-TFSI0100500600120100806040200SN1IL-TFSIAN1IL-TFSICEETMAIL-TFSI200 300 400oTemperature ( C)Capacity (mAh/g)Capacity (mAh/g)Efficiency (%)Efficiency (%)00301501209060180010 20 30 40 50 60 70 80 90Cycle2080604010005253003015012090601800.2C2C1.5C1C0.5C10 15 20

32、Cycle number0.2C020806040100120Cell Performances for Novel OS Ionic LiquidsLCO/Graphite, 2.7-4.4 V, 0.2CSN1IL-TFSI:DMC =1:1 by vol.210Capacity (mAh/g)Efficiency (%)Capacity (mAh/g)Efficiency (%)0102030405060708090100220200180160140120100806040200Cycle Number100806040200NMC-LI cell; CapacityRetention

33、: 96% (100 cycle)SN1IL-TFSI-EMC-1-102462202001801601401201008060402008 10 12 14 16 18 20 22 24 26 28 30Cycle Number100806040200NMC/graphite (2.7-4.6V)SN1IL-TFSI-EMC-1-1Cell Performances for Novel OS Ionic LiquidsCoulombic efficiency / %Specific capacity/ mAhg-1051015202530350804020016012004020Cycle

34、number28Graphite/NMC, 2.7-4.5 V, 0.2C2%PS 0.2M LiODFB 0.8 M LiPF6 BNSBNS for 4.5 V graphite/NMC cellProvided by YTQ1008060Specific capacity/ mAhg-1Efficiency (%)05101520250Cycle number(a) 210180150120906030010080604020SN1IL-TFSI for 4.5 and 4.6 V graphite/NMC2.7-4.6 V2.7-4.5 VGraphite/NMC0.2CSN1IL-T

35、FSI/EMC (1:1 by vol.)Capacity/mAh140001200010000800060004000200000100200300400500600700E12A084-1668 Cycle; 83.53%EST: 811 Cycle; 80%10AAE7365270PM3HSE)-11500mAhCommercialization of OS ElectrolytesNMC/OS Electrolyte/C Battery (10 Ah)Number of CycleCharge: CC 10Ato 4.2V; CV 4.2V to 3.5hr or 200mAcut-o

36、ff at RTDischarge: 10A to 2.75V at RT采测一1s采集一个数据两种电解液的电池在穿刺测试过程中温升趋势和最高温度均没有明显差异,即电池内部的放热反应方式和程度没有变化,但有机硅电解液能有效抑制易燃成分的燃烧。有机硅电解液与商业电解液三元动力电池(10 Ah)针刺安全性对比有机硅电解液电池烟雾喷射力度较小,地上的黑色物质少商业电解液电池烟雾喷射力度较大,地上的黑色物质多,部分电池会着火爆炸OS electrolyte batteryPack (10.8V,100Ah)Demonstration of OS Battery PackApplication: Sol

37、ar Energy Navigation lightCollaboration:GD Maritime Safety Administration (广州航标局)SiC compositeCompatability of OS Electrolyte with Si AnodeDischarge capacity (mAh/g)Capacity retention (%)Columbic efficiency (%)ElectrolyteLB303LB303+FECLB303+ BNSElectrode1st CE1st reversible cap.100th CE100th reversi

38、ble cap.Capacity retentionSi77.1%270698.8%1365.0%SiC79.7%105498.4%49546.9%Si86.4%308998.7%128841.7%SiC84.2%107596.0%84178.2%Si86.1%334899.4%203560.8%SiC82.0%113996.9%100388.1%Current density: 400mA/g02080100010008000700060005000400030002000Si anode (LB303)Si anode (LB303+FEC)Si anode (LB303+BNS)SiC

39、anode (LB303)SiC anode (LB303+FEC)SiC anode (LB303+BNS)40 60Cycle number1008060020406080100100806040200120Si anode (LB303+BNS)SiC anode (LB303)SiC anode (LB303+FEC)SiC anode (LB303+BNS)Cycle numberSi anode (LB303)Si anode (LB303+FEC)Discharge capacity (mAh/g)Discharge capacity (mAh/g)Columbic effici

40、ency (%)Columbic efficiency (%)Current density: 400mA/g68% capacity retention05010015020010000200040003000SiC (LB303)SiC (LB303+FEC)SiC (LB303+BNS)200406010080LB303+BNSSi85.9%262199.7%1696Cycle numberCurrent density: 600mA/gElectrolyteElectrode1st CE1st reversible capacity200th CE200th reversible ca

41、pacity0502001000020003000400060005000Si anode (LB303+BNS)100 150Cycle numberCurrent density: 600mA/g6050708010090SiCSi纳米硅颗粒负极材料极片在商业电解液和使用了FEC添加剂时,极片在首次嵌脱锂后电极出现明显的脱落,在使用了有机硅电解质(BNS)为添加剂时,极片脱落现象明显改善。与裸硅负极材料相比,经过碳包覆后制备出的碳硅复合材料极片在使用商业电解液时,经过嵌脱锂后有部分剥落,但情况比裸硅电极已有改善。当使用了FEC和BNS为添加剂时有明显的改善,极片并为出现类似的剥落现象。In

42、tensity (a.u.)Intensity (a.u.)Intensity (a.u.)Raman shift (cm )Raman shift (cm )Raman shift (cm )Raman dataRef: 1 Adv. Mater. 2013, 25, 449845032 J. Non-Cryst. Solids 2006 , 352 , 4101 .1、BNS作为添加剂易于在Si表面形成含有Si-O-Si的SEI膜2、与传统 的SEI膜不同,形成的这种SEI膜可能有一定的脱嵌锂活性(Li2Si2O5)3、在脱锂后,BNS作为添加剂时产生的SEI膜较其它两种电解液相比能稳定存

43、在50010001500SiLB303LB303+FECLB303+BNS-1Delithiation at 1.5V500100015002000Si befor cycle50010001500Si-SistretchingLB303LB303+FECLB303+BNS-1Si-O-Sibendingin Li2Si2O5-1Lithiation at 0.01VSi-O stretching vibrationSiIntensity (a.u.)Intensity (a.u.)Intensity (a.u.)Raman shift (cm )Raman shift (cm )Raman

44、shift (cm )500100015002000SiCLB303LB303+FECLB303+BNSSi-O-SibendingLithiation at 0.01VSi-O stretching vibrationin Li2Si2O5-15001000 15002000SiCDelithiation at 1.5VLB303LB303+FECLB303+BNSG bandD band-11、BNS作为添加剂在SiC表面形成含有Si-O-Si的SEI膜2、由于有包覆碳层的存在,以FEC和BNS作为添加剂时产生的SEI膜都较稳Ref: 1Adv. Mater. 2013, 25, 4498

45、45032 J. Non-Cryst. Solids 2006 , 352 , 4101 .5001000 15002000SiC anode before cycle-1AnodeSiSiCElectrolyteLithiationDelithiationLithiationDelithiationLB3033.6%46.4%1.8%2.4%LB303+FEC5.5%26.8%4.8%6.3%LB303+BNS14.2%8.6%6.8%9.5%Intensity (a.u.)Intensity (a.u.)1.52.02.5LB303+BNS(Lithiation)LB303+BNS(Del

46、ithiation)LB303(Delithiation)KevOCLB303(Lithiation)FSiSi anode0.51.02.02.5LB303+BNS(Delithiation)LB303+BNS(Lithiation)LB303(Delithiation)LB303(Lithiation)SiCanodeSiFOC1.5Kev0.5 1.0Si 元素含量分析1、LB303和LB303+FEC: Si电极在循环后表面硅含量猛增,SEI膜的破坏硅的裸露2、 BNS作为添加剂时产生的SEI膜中Si含量高于LB303形成的,证明Si成分参与成膜3、在SiC中碳层的存在对三种电解液来说

47、都有利形成更加稳定的SEI膜Transmission (a.u.)Transmission (a.u.)Transmission (a.u.)5002500Delithiation1000 1500 2000Wavenumber (cm-1)LithiationLB303+FECSi anode5002500DelithiationLithiationLB303Si anode1000 1500 2000Wavenumber (cm-1)*1、 (LB303) 870:LiPF6峰的相对强度明显减小,说明经过脱锂后SEI的分解(Ref: J. Phy. Chem. C 2011, 28, 96

48、5-976)2、(LB303+FEC) 870:LiPF61640, 1450,1090, 1810: 为FEC分解产物(Ref: Langmuir 2011, 28, 965-976)5001000150020002500*Si anodeLB303+BNSDelithiationLithiationWavenumber (cm-1)3、(LB303+BNS) 870:LiPF6峰的相对强度减小不明显,说明经过生成的SEI较为稳定,对比三种电解液,1060处的Si-O-Si 键明显增强,证实了SEI膜中的Si-O-Si成分,脱锂后任然能够稳定存在Transmission (a.u.)Tran

49、smission (a.u.)Transmission (a.u.)SiC anode5002500LB303+FECLithiationDelithiationSiC anode1000 1500 2000Wavenumber (cm-1)5001000150020002500DelithiationLithiationWavenumber (cm-1)500 1000 1500 2000 2500SiC anodeLB303DelithiationLithiationWavenumber (cm-1)LB303+BNS1、 SEI结构分析参考Si anode2、 与Si电极不同,由于C的存在,形成的SEI膜更加稳定(870:LiPF6峰的相对强度在脱锂后变化没有Si电极那么明显)Si anode (Electrolyte:LB303)发生膨胀 Lithiation at 0.01V发生收缩开裂 Delithiation at 1.5V生成的SEI膜生成的SEI膜碎裂Si anode (Electrolyte: LB303+ 10% BNS)较小膨胀 Lithiation at 0.01V并未发生收缩开裂 Delithiation at 1.5V生成的SEI膜生成的SEI膜稳定存在SiC anode (Ele

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论