版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、突出“四基”教学目标的新型教学教学设计中的解决策略大连博伦中学王小双2010年9月19日突出“四基”教学目标的新型教学教学设计中的解决策略义务教育数学课程标准明确指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事教学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”全日制普通高级中学数学教学大纲中规定“高中数学的基础知识主要是高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。”把数学知识中的数学思想和方法纳入基础知识
2、数学教育范畴,充分体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然要求。近年来,我区依据数学课程标准教育理念,率先开展新课程改革的先河,大胆提出“四基”教学目标,不断将实践与理论相结合,探讨“如何准确确定四基教学目标”“四基目标落实情况”等一系列教学问题。“四基”教学已成为甘井子区数学现代教育研究中的一项重要课题。一、何谓“四基”教学目标教学目标是课堂教学的核心和灵魂,是课堂教学的出发点和归宿,它具有导向、调控、激励、评价等功能。因此课堂教学目标的确立与完成对课堂教学质量的高低起着很重要的作用。数学课堂教学目标的制定,要能
3、促进学生的全面发展。因此,我们的教学目标不应是简单的知识传授,而是要帮助每一个学生进行有效的学习,使每一个学生学会想象,学会思考。爱因斯坦说过:“想象力比知识重要,因为知识是有限的,而想象力概括着世界上的一切,推动着进步,并且是知识进步的源泉。”日本学者川上正当也认为:“知识,百科全书可以替代,可是,考虑出新思想、新方案,却是任何东西也替代不了的。”所以有人扣响了世纪之问:你学会学习了吗?这就促使我们教育工作者不得不进行反思:我们的课堂教学目标到底是什么?在以往的教学中,我们只关注结果性目标(知识技能目标),没有过程性目标(数学思想方法及数学活动经验),经过多年的实践与研究,我区提出“四基”目
4、标:诠释“四基”基本知识、基本技能、基本活动经验、基本思想方法数学的基础知识-后续学习的基础数学的基本技能-正确、规范、迅速数学基本的思'想、方法-数学最本质的东西数学最基本的活动经验-解决不同类问题时有不同的策略1、数学的基础知识在初中学段,数学的基本知识主要包含三大方面:数与代数空间与图形统计与概率2、数学的基本技能数学技能指运算的技能、推理的技能、作图的技能,数据处理的技能、绘制图表的技能、使用计算器的技能、数学交流等技能3、数学基本的思想、方法数学思想:(一)数形结合思想:数学是研究现实世界空间形式和数量关系的科学,因而数学研究总是围绕着数与形进行的。数”就是方程、函数、不等式
5、及表达式,代数中的一切内容;形”就是图形、图象、曲线等。数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系。数形结合就是抓住数与形之间的内在联系,以形”直观地表达数,以数”精确地研究形。华罗庚曾说:数缺形时少直觉,形缺数时难入微。”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉。(二)转化和化归思想:在教学研究中,使一种对象在一定条件下转化为另一种研究对象的数学思想称为转化思想。体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题,就这一点来说,解题过程就是不断转化的过程。(三)类比思想:波利亚曾说过:“类比是一个伟
6、大的引路人”。在中学数学中,由2个数学系统中所含元素的属性在某些方面相同或相似,推出它们的其他属性也可能相同或相似的思维形式被称为类比推理,运用类比推理的模式解决数学问题的方法称为类比法。类比既是一种逻辑方法,也是一种科学研究的方法,是最重要的数学思想方法之一。(四)分类讨论思想:根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法,分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,使所学知识条理化。数学中的分类有现象分类和本质分类两种,前一种分类是以分类对象的外部特征、外部关系为根据的,如复数分为实数与虚数等,这种分法看上去一目了然,但不能
7、揭示所分对象之间的本质联系;后一种分类是按对象的本质特征、内部联系进行分类的,如函数按单调性或有界性分类,多面体按柱、锥、台分类等。(五)函数与方程思想:用函数的观点、方法研究问题,将非函数问题转化为函数问题,通过对函数的研究,使问题得以解决。通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考察加以解决。(六)代换与符号化思想(七)样本估计总体的思想数学方法:有的是具体的方法,如代入法、配方法、待定系数法、换元法等,有的是逻辑方法,如反证法、数学归纳法、演绎法
8、、分析法、综合法等总之,要用“方法”去了解“思想”,用“思想”去指导“方法”。4、数学最基本的活动经验数学最基本的活动经验主要指学生审题经验,分析问题经验以及解决问题经验二、如何准确确立“四基”教学目标1、基本知识与基本技能基本知识与基本技能:指在一节数学课中,对数学知识及技能有什么具体的目标要求。标准中使用了“了解(认识)、理解、掌握、灵活运用”刻画知识技能的目标动词。了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系掌握:能在理解的基础上,把对象运用
9、到新的情境中灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务.2:基本思想方法与基本活动经验思想与方法:是指让学生经历、参与数学活动,进而感受、探究知识的发生、发展、形成与应用的过程.在经历数学活动中,让学生进行数学思考、解决问题、让学生掌握数学思想及学习方法,从而达到学会和会学的目的数学活动经验:是指在一节数学课中,让学生经历、参与、探究哪些数学活动,在活动中,学生的感悟和体验要达到什么目标,在数学活动中,学生要进行哪些数学思考,解决哪些问题,获得哪些学习经验及解题经验标准中使用了经历(感受)、体验(体会)、探索”等刻画数学活动水平的目标动词经历(感受):在特定的
10、数学活动中,获得一些思想方法及初步的经验体验(体会):参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系.三、实际教学中“四基”教学目标的确立与落实案例一:人民教育出版社义务教育课程标准实验教科书七年级下册第七章第三节7.3.2多边形的内角和本节课四基教学目标:基本知识:探索中理解、记忆、运用内角和公式基本技能:1、将多边形分为若干个三角形,利用三角形的性质研究多边形的技能。2、会分割并推理论证,能进行简单计算基本思想方法:通过把多边形转化成三角形的分割方法体会转化思想的运用,同时体
11、会从特殊到一般的数学思想,类比转化及数形结合思想方法的应用。基本活动经验:1、多边形问题转化为三角形问题2、通过探索多边形内角和公式的不同证明方法,归纳解决多边形问题的一般思路;同时经历从实验几何过渡到论证几何的过程。教学基本流程:活动1:回顾任意一个三角形的内角和是多少?长方形的内角和是多少?为什么?正方形呢?长方形和正方形都是几边形?你能猜出任意一个四边形的内角和吗?设计意图:在活动1的问题提出过程中,从对三角形内角和及特殊四边形(如长方形、正方形)内角和的认识出发,启发学生由特殊四边形猜测一般四边形的内角和活动2:探索五边形、六边形的内角和,类比上述方法探索任意多边形的内角和公式。设计意
12、图:通过类比四边形内角和的得出方法,探索特殊多边形的内角和,发展学生的推理能力。在此基础上,探索任意多边形的内角和公式,让学生体会从特殊到一般的思考问题的方法。活动3:多边形内角和公式的应用。设计意图:运用多边形内角和公式,进而巩固和加深对多边形内角和的掌握.活动4:小结与反思、布置作业设计意图:学生小结,梳理所学知识,达到巩固、发展、提高的目的.重点:多边形内角和公式的探究过程难点:探索多边形内角和时,如何把多边形转化成三角形,利用分割方法推导多边形内角和本节课四基教学目标的落实情况环节教学内容设计意图情境导入1、任个三角形的内角和是多少?2、长方形的内角和是多少?为什么?正方形呢?长方形和
13、止方形都是几边形?3、你能猜出任个四边形的内角和吗?在问题提出过程中,从对三角形内角和及特殊四边形(如长方形、止方形)内角和的认识出发,启发学生由特殊四边形猜测一般四边形的内角和活动1DBCBC、鼓励学生的发现,师生同步总结方法:辅助线把四边形分割成几个三角形,把四边形的内角和转化为三角形内角和活动2问题1:你能从以上四种方法中任选一种,利用类比的思想方法,求出五边形、六边形的内角和吗?OO通过增加图形的复杂性,让学生在经历证明的过程中进一步领悟转化及类比的数学思想方法。问题2:你能通过你的方法得到n边形的内角和吗?方法一:(n-2)x180°方法二:(n-1)x180°-
14、180°方法三:nx180°-360°方法四:(n-1)x180°-180°结论:多边形内角和公式n边形的内角和=(n2)?180通过四边形、五边形,特殊多边形的内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式。体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。活动3练习通过练习实现知识向能力的转化,增加学生解决数学问题的经验案例二:人民教育出版社义务教育课程标准实验教科书八年级下册第十六章分式第二节第一课时分式加减本节课四基教学目标:基本知识:理解并掌握分式的加减法则,并会运用它们进行分式的加减运算。基本技能:会进行简
15、单的分式加减运算,具有一定的代数化归能力。基本思想方法:1、通过类比分数的方法,经历探索分式加减运算法则的过程,体会由特殊到一般的数学思想方法。2、会把异分母的分式相加减,转化成同分母的分式相加减。3、体会整体及化归的思想方法。基本活动经验:1、异分母分式相加减转化为同分母分式相加减。2、积累分式运算的方法,总结进行分式加减运算的解题经验。教学基本流程:活动1命题发现创设情景引出命题,引导学生入情入景发f现命题。活动2:问题1活动3:问题1命题认识学生类比分数加减法则,大胆猜想分式加减法则并验证法则活动2:问题2一命题应用活动3:问题2i解析示范应用命题,加深学生对分式加减运算法则的理解,提高
16、运算能力。活动4十命题拓展拓展延伸构建新的命题体系,理解升华构建自我命题体系本节课四基教学目标的落实情况活动3:问题1:探索新知,尝试发现12+1的结果是多少?你是怎样计算的?1121呢?你还能举出其他的例子吗?你能发现这组代数式有什么特点吗?你能用自然语言和数学语言分别表述你刚才运算所用的法则吗?法则:异分母分式相加减,先通分,变为同分母的分式,再加减。用代数式表示为:亘_badbcbdbdad-bcbd【设计意图】同分母分式的加减法比较容易,它是进一步学习异分母分式加减法的基础。异分母的分式加减运算与同分母分式加减运算相比要困难一些,这里主要是做好转化工作,让学生体会转化的思即把异分母分式
17、加减转化为同分母分式加减运算,转化的关键是通分想.活动4:巩固练习1、计算2X2Xx2-21-x24aa?71a1-a2(3)a'x22xyy222x-2xyy22xyxy22xy-xy(4)xy四名学生板演,师生共同评述,引导学生体会算理师:练习(1)(2)是同分母分式相加减还是异分母分式相加减?生1:异分母分式相加减生2:我认为可以经过适当的变形,通过提出一个减号就可以变为同分母分式师:我同意第二名同学的观点,要注意观察,当分式的分母互为相反数时,应注意变号师:(3)(4)与我们前面的计算有什么不同?在计算时应注意什么?生:在面的运算都是分式加减分式,而(3)(4)是分式与整式的运算,在计算时,应注意不要忘记通分。师:整式的分母可以看作1,然后通分;x+y可以看成两个单项式,也可看作一个多项式,再进行计算【设计意图】通过由简到繁,循序渐进的练习,考查学生对基础知识的掌握程度,培养和提高学生的运算学生可以通过这几个小题总能力。这四个小题是常考题型,也是学生经常出现错误的地方,结解题经验,提高自己计算的准确度。2、计算师:通过这组计算你总结出哪些经验?生:对于复杂的分式应先因式分解,再通分,转化为同分母分式进行计算。【设计意图】让学生再次经历分式加减运算,强化技能,以达到熟练运算的要求。第2题是异分母的分式加减法的运算,引导学生先把分母进行因式分解,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙教新版八年级地理上册月考试卷
- 2025年沪教版六年级语文下册阶段测试试卷含答案
- 2025年沪科新版高一物理上册阶段测试试卷含答案
- 2025年湘教版六年级英语上册阶段测试试卷
- 2024版公司贷款借款合同
- 2025年上外版八年级科学上册阶段测试试卷
- 二零二五版专业吊车租赁及货物安全运输服务协议2篇
- 2024提高企业社会责任传播效果采购合同3篇
- 2025年度高风险化学品租赁合同规范文本3篇
- 2024年湖南网络工程职业学院高职单招语文历年参考题库含答案解析
- 2024年职工普法教育宣讲培训课件
- (人教PEP2024版)英语一年级上册Unit 1 教学课件(新教材)
- 全国职业院校技能大赛高职组(市政管线(道)数字化施工赛项)考试题库(含答案)
- 2024胃肠间质瘤(GIST)诊疗指南更新解读 2
- 小学数学二年级100以内连加连减口算题
- 建设单位如何做好项目管理
- 三年级上递等式计算400题
- 一次性餐具配送投标方案
- 2024年原发性肝癌中医诊疗指南
- 2024医疗建筑韧性设计导则
- 军队文职半年述职报告
评论
0/150
提交评论