曲线回归分析_第1页
曲线回归分析_第2页
曲线回归分析_第3页
曲线回归分析_第4页
曲线回归分析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、曲线回归分析SPSS里的曲线回归要求自变量与因变量的类型都为数值型的连续变量。如果选择了时间作为变量,曲线估计过程中将自动生成一个时间变量,其在各观测记录之间的间隔是等长的。同时要求因变量也是时间顺序数据。SPSS的曲线估计模块能够自动拟合包括线性模型、对数曲线模型、二次曲线模型和指数曲线模型在内的十几种曲线模型。输出的统计量包括模型的回归系数、复相关系数、调整R方和方差分析表等。由于曲线估计的内容比较复杂,所以经常通过变量替换的方法把不满足线性关系的数据转换为符合线性回归模型的数据,再利用线性回归进行估计。在一元回归中,若因变量和自变量相关的趋势不是线性分布,呈现曲线关系。这种情况可以利用S

2、PSS提供的曲线估计过程(CurveEstimation)方便地进行线性拟合,选出最佳的回归模型来拟合出相应曲线。下面以一个实例来介绍曲线拟合的基本步骤和使用方法。案例台湾稻螟蚁螟侵入不同叶龄稻茎后的生存率数据(表4-1)。拟合出适合的曲线模型,来表达不同叶龄稻茎对台湾稻螟蚁螟侵入的生存关系。表4-1台湾稻螟蚁螟侵入不同叶龄稻茎后的生存率数据生存率8.910.312.312.913.113.513.813.612.713.5叶龄234567891011本例子数据保存在DATA6-3.SAV。1)准备分析数据在SPSS数据编辑窗口建立变量生存率"和叶龄两个变量,把表6-13中的数据输入

3、到对应的变量中。或者打开已经存在的数据文件(DATA6-3.SAV)。2)启动线性回归过程单击SPSS主菜单的"Analyze下的"Regression中“CurveEstimation项,将打开如图4-1所示的线回归对话窗口。图4-1线回归对话窗口3)设置分析变量设置因变量:从左侧的变量列表框中选择一个或多个因变量进入“Dependent(s)方匡。本例子选生存率”变量为因变量。设置自变量:选择一个变量为自变量,进入"Independent框,也可选取"Independent框中的“Time项,即以时间为自变量。本例子选叶龄”变量为自变量。选择标签变量

4、:选择一个变量进入到"CaseLabels框中,该变量为标签变量,可以利用该变量的值在图上查找观测值。本例子没有标签变量。4)选择曲线方程模型在“Models'框中选择一个或多个回归方程模型,这11个模型都可化为相应的线性模型。其中各项的意义分别为:Linear线性模型了(2)Quadratic二次模型,二b。+bi#+8,Compound复合模型>“尻环(4)Growth生长模型Logarithmic对数模型(6)S形模型”EKP(bo+bi/X)(7) Cubic抛物线模型(8) Exponential指数的模型''EXP(b-Yj(9) Inver

5、se倒数模型(10)Power募函数模型yb。一+匕/1(11)Logistic逻辑斯蒂模型以在各项模型上单击鼠标右键,可以得到模型的方程类型。当选中“Logistic项时,应在“Upperbound框中输入一个数值作为逻辑模型的上限值。本例子选中第9号模型(Inverse,倒数模型)。5)设置方程常数项选中“Includeconstantinequation项回归方程中包含常数项。6)绘制模型拟合图选中“Plotmodels项绘制出回归方程模型图。本例子选中此项。7)输出方差分析表选中“DisplayANOVAtable项,将输出方差分析表。8)保存分析数据单击“SaveK钮,将打开如图4-

6、2所示的对话框。该对话框用于选择要保存的新变量。图4-2曲线回归保存值设置对话窗口“SaveVariables”框中列出了可保存的新变量:aPredictedvalues预测值。因变量的预测值。“Residuals残差。因变量的观测值和预测值的差。aPredictionintervals残差因变量的预测区间。当选中"Predictionintervals项时,可在该项下面的"Confidenceinterval框'中输入显著性水平。本例子选中“Predictedvalues项、“Residuals项和aPredictionintervals项。”aPredictca

7、ses彳当选择时间序列为自变量时,本栏设置一个超过数据时间序列的预测周期。其中各项的意义分别为:'uPredictfromestimationperiodthroughlastcase根据估计周期为所有的观测量提供预测周期。|"Predictthrough当要预测的观测量超过当前的数据时间序列时,输入观测量的一个周期数值。9)提交执行在主对话框里单击“OK提交执行,结果将显示在输出窗口中。输出结果主要分两部分:第一部分是文本输出,给出了曲线模型、各统计量、方差分析以及曲线方程系数,见图3-3;第二部分是预测模型与分析数据的图形比较,见图3-2。有时SPSS在输出浏览窗口不会完

8、全显示出来所有的文本,在文本框左下角显示了一个红色三角形来提示我们。可以使用鼠标选中文本块,拖动鼠标把文本框扩大,直至显示出全部文本。根据曲线回归保存值设置对话窗口”的设置,SPSS在数据编辑窗口增添如下变量:fit_1为线性预测值;err_1为观测值和线性预测值的差值;lcl_1和ucl_1分别为显著性水平为95%的线性预测区间的上限和下限。10)结果分析主要结果:MODEL:KD_7.(调用过程次数)HetKad.INVERSE(模型名称)DependerLtvariable.生存率(因变量ListwiseT)eletionoflissingData缺失数据的处理方式)(多重相关系数)(相

9、关系数平方)(调整的相关系数平方)(标准残差)MultipleE.95449RSquare.91105AdjustedRSquare.89994StandardError,50880Analysisof7ariance:、方差分析表)DFSuma£SquaresKeanSquareRegression121.21298721.212987(回归均方Residuals82.071013.258377(残留均方)f:81.94247SignifF=.0000方程变量表VariablesintheEquatioaVariableBSEBBetaTSigT叶龄-11.8903561.313531954492-9.052.0000(Cons-tant)14.861706.310292896.0000图3-3曲线回归的文字输出部分力涛稍螟ObservedInversa图3-4回归方程模型图分析:建立回归模型:根据图3-3中方程变量表得:y=14.861706-11.890356/x回归方程的显著性检验:回归方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论