回归分析GDP和用电量二者之间的关系_第1页
回归分析GDP和用电量二者之间的关系_第2页
回归分析GDP和用电量二者之间的关系_第3页
回归分析GDP和用电量二者之间的关系_第4页
回归分析GDP和用电量二者之间的关系_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验一信息检索一、实验目的掌握信息检索的基本思想和理论,熟悉信息检索的整个过程和必要步骤。二、实验类型设计型实验三、实验仪器硬件:计算机(PIII650,256RAM以上)、网络设备软件:IE四、实验原理遵循信息检索的基本过程,采用适宜的信息检索工具,将所需要的信息检索出来。五、实验内容和要求(1)检索出某一段时间内的第一产业GDP勺数据和用电量。(2)检索出某一段时间内的第二产业GDP勺数据和用电量。(3)检索出某一段时间内的第三产业GDP勺数据和用电量(4)检索出某一段时间内的GDP的数据和用电量。六、实验数据(GDP单位:亿元用电量单位:亿千瓦时)卅-产业第一一产业第二产业GDP总年份用

2、电总量GDP用电量GDP用电量GDP用电量量19842316.1153.63105.727751786.32437208.1387119852564.41663866.63086258525990164136.819862788.7215.34492.732692993.826810275.24560.9198732332565251.63665357429612058.64975.519883865.42746587.240484590.3313.215042.85573.619894265.9296.272784589.25448.4352.616992.3618019905062336.

3、287717.44936.35888.4384.518667.8697219915342.23649102.253087337.142321781.57493.419925866.638311699.55946.99357.445028923.57855.419936963.840416454.46497.811915.7638.535333.98501.119949572.745622445.46932.516179.871248197.99197.5199512135.849028679.57387.319978.5839.660793.79867.8199614015.450333835

4、804523326.21008.771176.610790.3199714441.95144126988.11102.197897311039.11199814817.6498.4239004.28263.4330580.51197.984402.311347.3199914770524.741033.68806.433873.41291.389677.112092.3200014944.7539.545555.99795.1387141481.899214.613508.4200115781.3573.249512.310634.644361.61635.61096

5、55.214682.520021653759053896.81195749898.91837120332.716386200317381.758662436.31394856004.72109135822.818891200421412.761273904.31625864561.32435159878.32173520052242074187364.61847873432.92631183217.4246892006240408321031622135484721.4103879.2822211923.5282482007286276951247991946462459257305.6324

6、5820083370287914900325863131340349831404534268七、思考确实有些数据有一些异常,主要是经济危机对社会的影响,干扰了GDP和用电量的正常波动,但是从整体来说还是符合社会生产力的发展。实验二软件使用一、实验目的掌握常用软件的操作方法,并能够结合实际,加以灵活运用,达到学以致用的目的。二、实验类型设计型实验三、实验仪器硬件:计算机(PIII650,256RAM以上)软件:Excel四、实验原理学习一些常用的统计分析方法,并采用Excel软件来加以实现。五、实验内容和要求实验内容:(1)对实验一得到的四部分数据,采用回归方法来找出GD环口用电量二者之间的关系

7、。实验要求:在上述实验内容中,在进行回归分析的时候,还要有相应的检验,以确保分析结果的可靠性。六、实验数据(1)第一产业GDP与用电量分析dfSSMSSignificanceCoefficients标准误差tStatP-valueLower95%Intercept-7715.6535151335.461516-5.7775186.9317E-06-10478.26613XVariable142.900612752.60842845816.4469193.2732E-1437.5046674Upper95%下限95.0%上限95.0%析11666503547残差23141698400.32418

8、082019476160800.0121666503547270.501163.27317E-14-4953.040904-10478.2661-4953.040948.296558137.504667448.2965581RESIDUALOUTPUTY1-1126.1193973442.2193972-59455179931520.8484091267.85159143266.903348-33.9033482854039.114378-173.714377864991.507981-725.607980876710.96454-1648.9645487900.16

9、9525-2557.96952598715.281167-2848.681167109616.194035-2652.3940351111847.0259-2274.3258981213305.64673-1169.8467321313863.3547152.04530271414340.83852101.06148281513666.869891150.7301091614794.29799-24.297993971715429.22706-484.52706271816874.97771-1093.6777121917595.70801-1058.7080062017424.10556-4

10、2.40555552118539.521492873.1785132224073.70053-1653.7005322327977.65629-3937.6562922422100.272356526.7276552529993.985093708.014909XVariable1LineFitPlot4000003000002000001000000一100000XVariable1由表格中的数据可知,线性拟合模型为:Y=-7715.653515+42.90061275x(2)第二产业GDP与用电量分析SUMMARYOUTPUT回归统计MultipleR0.985051285RSquare0

11、.970326034AdjustedRSquare0.969035861标准误差7038.53499观测值25方差分析dfSSMSFSignificanceF回归分析13725928077037259280770752.09018214.51531E-19残差23113944242149540974.81总计2438398723191Coefficients标准误差tStatP-valueLower95%Intercept-18851.482712600.390173-7.2494823692.22692E-07-24230.7996XVariable16.2595474450.2282485

12、2327.424262654.51531E-195.787379403Upper95%下限95.0%上限95.0%-13472.16582-24230.7996-13472.165826.7317154865.7873794036.731715486RESIDUALOUTPUT观测值预测Y1-1481.2385544586.9385542465.48070133401.11929931610.9778842881.72211644089.7586721161.84132856487.165343100.03465769874.83242-2596.83242712047.52134-4330.

13、121338814374.19512-5271.995123918373.41999-6673.9199861021821.80467-5367.4046731124542.82995-2097.4299471227389.672121289.8278751331506.576482328.4235211432285.326785257.6732231532873.849436130.3505731636272.59594761.0040971742461.410463094.4895381847716.300541795.9994581955993.92608-2097.1260822068

14、456.68504-6020.3850452182916.23964-9011.9396422296812.43497-9447.83496923114814.8934-11652.8934224102984.348721814.6512525143039.19285963.807153XVariable1LineFitPlot400000200000a0-200000XVariable1由表格中的数据可知,线性拟合模型为:Y=-18851.48271+6.259547445xRSquare=0.970326034(3)第三产业GDP与用电量分析SUMMARYOUTPUT回归统计Multipl

15、eRRSquare0.9738652040.948413435AdjustedRSquare0.946170541标准误差8087.60927观测值25方差分析dfSSMSFSignificanceF回归分析残差总计12765853964627658539646422.85252012.63687E-1623150441674565409423.72429162956391Coefficients标准误差tStatP-valueLower95%InterceptXVariable1-9280.3123182659.597778-3.489366850.001978669-14782.10953

16、5.366560161.71988084620.563378132.63687E-1631.80871558Upper95%下限95.0%上限95.0%-3778.515166-14782.10947-3778.51516638.9244047431.8087155838.92440474RESIDUALOUTPUT观测值预测Y残差1-686.23819882472.5381992-120.37323622705.3732363197.92580522795.87419541188.189492385.8105151796.4943252793.80567563189.9367952258.4

17、6320574318.1300641570.26993685679.742631657.3573796634.6397552722.7602451013301.23635-1385.5363461115900.67852279.12148241220413.45159-434.95159441326393.93692-3067.7369181429700.35663-2712.2566281533085.2901-2504.7901011636388.52682-2515.126821743125.85653-4411.8565311848565.23348-4203.633484195568

18、8.0587-5789.1587012065307.76307-9303.0630652176837.26168-12275.961682283769.10747-10336.207472390524.12046-5802.7204622477686.0591226193.5408825114431.915116908.08487400000200000A0-200000XVariable1LineFitPlot10000200003000040000XVariable1由表格中的数据可知,线性拟合模型为:Y=-9280.312318+6.35.36656016xRSquare=0.94841

19、3435(4)总的GDP与用电量分析SUMMARYOUTPUT回归统计MultipleR0.991872662RSquare0.983811377AdjustedRSquare0.983107524标准误差10821.50187观测值25方差分析dfSSMSFSignificanceF回归分析11.63683E+111.63683E+111397.7508364.22211E-22残差232693412764117104902.8总计241.66377E+11CoefficientstStatP-valueLower95%Intercept-35114.78973940.511337-8.91

20、12266696.42127E-09-43266.35844XVariable19.3458823760.24998009637.386506064.22211E-228.828759151Upper95%下限95.0%上限95.0%-26963.221-43266.35844-26963.2219.8630056018.8287591519.863005601RESIDUALOUTPUT观测值预测Y残差123456789101112131415161718192021222324256144.9790395468.7435032764.354788672.9519546-1932.620294-5650.463367-11376.90221-13136.14528-9377.3547-9001.59095-2646.0634363685.1916075446.51511510917.566

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论