版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等腰三角形的判定等腰三角形的判定复习引入1.1.等腰三角形的等腰三角形的两腰相等两腰相等;等腰三角形有哪些特征呢?等腰三角形有哪些特征呢?A AB BC C2.2.等腰三角形的两个底角相等等腰三角形的两个底角相等, ,(简称(简称“等边对等角等边对等角”););3.3.等腰三角形顶角的平分线、等腰三角形顶角的平分线、底边上的中线和底边上的高互底边上的中线和底边上的高互相重合。(简称相重合。(简称“三线合一三线合一”)4.等腰三角形是轴对称图形等腰三角形是轴对称图形,对称轴对称轴是底边的中垂线。是底边的中垂线。如图所示,量出AC的长,就可知道河的宽度AB,你知道为什么吗? 1.如图:ABC中,已
2、知AB=AC, 图中有哪些角相等?ABC B= C 在三角形中等边对等角在三角形中等边对等角反过来:在ABC中, B= C, AB=AC成立吗?探索思考 1 1,作一个三角形,有两个角,作一个三角形,有两个角相等,这两个角所对的边是否相等,这两个角所对的边是否相等?相等?ABCD1 2等腰三角形有以下的判定方法等腰三角形有以下的判定方法: 如果一个三角形有两个角相等,那么这个如果一个三角形有两个角相等,那么这个三角形是等腰三角形三角形是等腰三角形 简单地说简单地说;在同一个三角形中,等角对等到在同一个三角形中,等角对等到边边 一个三角形中,有两个角的度数分别一个三角形中,有两个角的度数分别为为
3、20和和80,那么这个三角形是,那么这个三角形是等腰三角形(等腰三角形( ) 一个等腰三角形的底角只能小于一个等腰三角形的底角只能小于90且大于且大于0。(。( ) 两腰相等的三角形是等腰三角形(两腰相等的三角形是等腰三角形( ) 两底角相等的三角形是等腰三角形两底角相等的三角形是等腰三角形( )练习练习2 2D D如图如图, ,已知已知A=36A=36, , DBC=36DBC=36, C=72, C=72, ,则则1=1= ,2=,2= , , 图中的等腰三角形图中的等腰三角形有有 . .A AB BC C12例例1 一次数学实践活动的内容是测量河宽,如图,一次数学实践活动的内容是测量河宽
4、,如图,即测量即测量A,B之间的距离。同学们想出了许多方法,其之间的距离。同学们想出了许多方法,其中小聪的方法是:从点中小聪的方法是:从点A出发,沿着与直线出发,沿着与直线AB成成60 角角的的AC方向前进至方向前进至C,在,在C处测得处测得 C=30 , 量出量出AC的的长,它就是河的宽度(即长,它就是河的宽度(即A,B之间的距离)。这个方之间的距离)。这个方法正确吗?请说明理由。法正确吗?请说明理由。 BCAD60例例2 2:上午:上午10 10 时,一条船从时,一条船从A A处出发以处出发以2020海里每小时的速度向正北航行,中海里每小时的速度向正北航行,中午午1212时到达时到达B B
5、处,从处,从A A、B B望灯塔望灯塔C C,测,测得得NAC=40NAC=40, NBC=80NBC=80求从求从B B处处到灯塔到灯塔C C的距离的距离NBAC80804040北解:解:NBC=A+CNBC=A+CC=80C=80- 40- 40= 40= 40 BA=BC BA=BC(等角对等边)(等角对等边)AB=20AB=20(12-1012-10)=40=40BC=40BC=40答:答:B B处到达灯塔处到达灯塔C40C40海里海里练习练习3例例2:如图,:如图,BD是等腰三角形是等腰三角形ABC的底边的底边AC上的高,上的高, DE BC,交,交AB于点于点E。 判断判断 BDE
6、是不是等腰三角形,请说明理由。是不是等腰三角形,请说明理由。AEDBC123小结名名称称图图 形形概概 念念性质与边角关系性质与边角关系 判判 定定 等等 腰腰 三三 角角 形形A AB BC C有两边有两边相等的相等的三角形三角形是等腰是等腰三角形。三角形。2.等边对等角等边对等角,3. 三线合一。三线合一。4.是轴对称图形是轴对称图形.2.等角对等边等角对等边,1.两边相等。两边相等。1.1.两腰相等两腰相等. . 思考思考1:1:如图如图, ,在在ABCABC中,已知中,已知ABC=ACBABC=ACB,BFBF平分平分ABCABC,CFCF平分平分ACB,ACB,请想想看请想想看, ,由以上由以上条件条件, ,你能推导出什么结论你能推导出什么结论? ?并就其中的一个加并就其中的一个加以说明理由以说明理由. .A AB BC CF FEG如果如果EGBC?开启 智慧w与同伴交流
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临夏现代职业学院《镀涂层质量检测技术》2023-2024学年第一学期期末试卷
- 丽江职业技术学院《合唱排练与指挥》2023-2024学年第一学期期末试卷
- 江苏财经职业技术学院《面向对象程序设计(Java)》2023-2024学年第一学期期末试卷
- 华北水利水电大学《小学教育教学叙事研究》2023-2024学年第一学期期末试卷
- 遵义师范学院《黑白木刻版画基础》2023-2024学年第一学期期末试卷
- 重庆理工职业学院《矿床学基础》2023-2024学年第一学期期末试卷
- 浙江特殊教育职业学院《光接入技术与数字通信课程实训》2023-2024学年第一学期期末试卷
- 中国政法大学《运动控制导论》2023-2024学年第一学期期末试卷
- 郑州信息工程职业学院《城市规划原理实验》2023-2024学年第一学期期末试卷
- 长沙电力职业技术学院《跨文化传播》2023-2024学年第一学期期末试卷
- 信息安全意识培训课件
- 2024年项目投资计划书(三篇)
- 配电安规课件
- 中国高血压防治指南(2024年修订版)解读课件
- 沥青路面施工安全培训
- 机电设备安装施工及验收规范
- 仓库安全培训考试题及答案
- 第六单元 中华民族的抗日战争 教学设计 2024-2025学年统编版八年级历史上册
- 初中古诗文言文背诵内容
- 天然气分子筛脱水装置吸附计算书
- 档案管理项目 投标方案(技术方案)
评论
0/150
提交评论