2022年1984年全国统一高考数学试卷(理科)_第1页
2022年1984年全国统一高考数学试卷(理科)_第2页
2022年1984年全国统一高考数学试卷(理科)_第3页
2022年1984年全国统一高考数学试卷(理科)_第4页
2022年1984年全国统一高考数学试卷(理科)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品word 名师归纳总结 - - - - - - - - - - - -1984 年全国统一高考数学试卷(理科)一、挑选题(共5 小题,每道题 3 分,满分 15 分) 1(3 分)数集 X= (2n+1) ,n 是整数 与数集 Y= ( 4k±1) , k 是整数 之间的关系是()A X . YBX . YCX =YDX Y2(3 分)假如圆 x2+y2 +Gx+Ey+F=0 与 x 轴相切于原点,那么()A F=0,G0,E0BE=0, F=0,G0CG=0,F=0, E0DG=0,E=0, F03(3 分)假如 n 是正整数,那么的值()A 肯定是零B肯定是偶数C是整数但不肯

2、定是偶数D不肯定是整数4(3 分) arccos( x)大于 arccosx 的充分条件是()A x(0,1Bx( 1,0)Cx0, 1D5(3 分)假如 是其次象限角,且满意,那么()A 是第一象限角B是第三象限角C可能是第一象限角,也可能是第三象限角D是其次象限角二、解答题(共15 小题,满 90 分)6(4 分)已知圆柱的侧面绽开图是边长为2 与 4 的矩形,求圆柱的体积7(4 分)函数 log0.5( x2+4x+4)在什么区间上是增函数?8(4 分)求方程的解集9(4 分)求式子( |x|+2)3 的绽开式中的常数项10( 4 分)求的值11( 4 分)要排一张有6 个唱歌节目和 4

3、 个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必运算)12( 6 分)设画出函数 y=H(x 1)的图象精选名师 优秀名师 - - - - - - - - - -第 1 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库13( 6 分)画出极坐标方程的曲线14( 12 分)已知三个平面两两相交,有三条交线,求证这三条交线交于一点或相互平行15( 12 分)设 c,d,x 为实数, c0,x 为未知数,争论方程在什么情形下有解,有解时求出它的解16( 12 分)设

4、 p0,实系数一元二次方程z22pz+q=0 有两个虚数根 z1,z2、再设 z1,z2 在复平面内的对应点是 Z1,Z2,求以 Z1 ,Z2 为焦点且经过原点的椭圆的长轴的长17( 9 分)求经过定点M ( 1, 2),以 y 轴为准线,离心率为的椭圆的左顶点的轨迹方程18(12 分)在ABC 中, A ,B,C 所对的边分别为a,b,c,且 c=10,P 为ABC的内切圆上的动点,求点P 到顶点 A , B,C 的距离的平方和的最大值与最小值19( 12 分)设 a2,给定数列 x n ,其中 x1=a,求证:( 1) xn2,且;( 2)假如 a3,那么20如图,已知圆心为O,半径为 1

5、 的圆与直线 l 相切于点 A ,一动点 P 自切点 A 沿直线 l 向右移动时,取弧 AC 的长为,直线 PC 与直线 AO 交于点 M 又知当 AP=时,点 P 的速度为 v,求这时点 M 的速度精选名师 优秀名师 - - - - - - - - - -第 2 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库1984 年全国统一高考数学试卷(理科)参考答案与试题解析一、挑选题(共5 小题,每道题 3 分,满分 15 分) 1(3 分)数集 X= (2n+1) ,n 是整数 与数集 Y= ( 4k

6、77;1) , k 是整数 之间的关系是()A X . YBX . YCX =YDX Y考点:集合的包含关系判定及应用分析:题中两个数集都表示的奇数倍的实数,依据集合的相等关系得这两个数集的关系解答:解:数集 X= ( 2n+1) ,n 是整数 其中的元素是的奇数倍数集 Y= (4k±1),k 是整数 其中的元素也是的奇数倍它们之间的关系是X=Y 应选 C点评:此题主要考查集合的相等等基本运算,属于基础题 要正确判定两个集合间相等的关系,必需对集合的相关概念有深刻的懂得,善于抓住代表元素,认清集合的特点2(3 分)假如圆 x2+y2 +Gx+Ey+F=0 与 x 轴相切于原点,那么(

7、)A F=0,G0,E0BE=0, F=0,G0CG=0,F=0, E0DG=0,E=0, F0考点:圆的一般方程分析:圆与 x 轴相切于原点,就圆心在y 轴上, G=0,圆心的纵坐标的肯定值等于半径,F=0, E0解答:解:圆与 x 轴相切于原点, 就圆心在 y 轴上,G=0,圆心的纵坐标的肯定值等于半径,F=0,E0应选 C点评:此题考查圆的一般式方程,直线与圆的位置关系,是基础题3(3 分)假如 n 是正整数,那么的值()A 肯定是零B肯定是偶数C是整数但不肯定是偶数D不肯定是整数考点:进行简洁的合情推理专题:分类争论分析:这是一个简洁的合情推理问题,我们可以对 n 的取值进行分类争论,

8、 并加以简洁的证明, 不难得到正确的答案解答:解: n 是正整数 当为为奇数时, n21 必为 8 的整数倍,不妨令n2 1=8Z, ZN*就=2Z,ZN*即此时的值为偶数 当为为偶数时, 1( 1) n=0就=0精选名师 优秀名师 - - - - - - - - - -第 3 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库故的值肯定是偶数应选 B点评:这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:依据新运算的定义,将已知中的数据代入进行运算,易得最终结果4(3 分) arcc

9、os( x)大于 arccosx 的充分条件是()A x(0,1Bx( 1,0)Cx0, 1D考点:反三角函数的运用专题:运算题;压轴题;分类争论;转化思想分析:充分考虑 arccosx 的范畴,推出 arccos( x)的范畴,然后确定arccos( x)大于 arccosx 的充分条件解答:解: arccosx0, ,(1) ) arccosx0,)时, x( 0, 1 ,arccos( x)(, arccosx,(2) ) arccosx(, 时, x 1,0),arccos( x)0,) arccosx,(3) ) arccosx=时x=0,arccosx=arccos( x),应选

10、A 点评:此题考查反三角函数的运用,考查分类争论的思想,是基础题5(3 分)假如 是其次象限角,且满意,那么()A 是第一象限角B是第三象限角C可能是第一象限角,也可能是第三象限角D是其次象限角半角的三角函数运算题;压轴题先依据 的范畴确定的范畴,再由可确定的大小关系,进而确定的象限解: 是其次象限角(kZ)当 k 为偶数时,在第一象限;当k 为奇数时,在第三象限;=是第三象限角考点:专题:分析:解答:应选 B点评: 此题主要考查象限角和二倍角公式以及同角三角函数的基本关系属基础题精选名师 优秀名师 - - - - - - - - - -第 4 页,共 13 页 - - - - - - - -

11、 - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库二、解答题(共15 小题,满 90 分)6(4 分)已知圆柱的侧面绽开图是边长为2 与 4 的矩形,求圆柱的体积考点:棱柱、棱锥、棱台的体积专题:运算题;分类争论分析:圆柱的侧面绽开图是边长为2 与 4 的矩形,可以有两种形式的圆柱的绽开图,分别求出底面半径和高,分别求出体积解答:解:圆柱的侧面绽开图是边长为2 与 4 的矩形,当母线为 4 时,圆柱的底面半径是此时圆柱体积是当母线为 2 时,圆柱的底面半径是,此时圆柱的体积是综上所求圆柱的体积是:或点评:此题考查圆柱的侧面绽开图,圆柱的体积,是基础题简洁

12、疏忽一种情形7(4 分)函数 log0.5( x2+4x+4)在什么区间上是增函数?考点:对数函数的单调性与特殊点专题:运算题分析:此题是一个复合函数, 故应依据复合函数的单调性来判定其单调性,先求出定义域, 判定出外层函数与内层函数的单调性,再依规章来判定即可解答:解:令 x2+4x+4 0,得 x 2,由 t=x2+4x+4 知,其对称轴为x=2故内层函数在( , 2)上是减函数,在( 2,+)上是增函数由于外层函数的底数0.51,故外层是减函数, 欲求复合函数的增区间, 只须求内层的减区间故函数 y=log0.5(x2+4x+4)在( , 2)上是增函数答:函数 y=log0.5(x2+

13、4x+4 )在( , 2)上是增函数点评:此题的考点是复合函数的单调性, 考查了对数与二次函数的单调性的判定方法以及定义域的求法8(4 分)求方程的解集考点:三角函数的化简求值专题:运算题;数形结合分析:利用平方关系和倍角公式对方程进行整理,依据一个周期内的正弦函数值求解,最终解集写出几何形式解答:解:由题意知,即 1+sin2x=, sin2x= ,就 2x=+2n或+2n( nZ),解得 x=+n或+n( nZ),所求方程的解集是: x|x=+n,nZ x|x= +n,nZ点评:此题考查了三角函数方程的求解,即利用同角的基本关系、倍角公式、两角和差公式等等,对方程进行化简,再由三角函数在一

14、个周期内的函数值和周期求出解集精选名师 优秀名师 - - - - - - - - - -第 5 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库9(4 分)求式子( |x|+2)3 的绽开式中的常数项考点:二项式系数的性质分析:解法一:利用分步乘法原理绽开式中的常数项是三种情形的和,解法二: 先将利用完全平方公式化成二项式,利用二项绽开式的通项公式求得第 r+1 项,令 x 的指数为 0 得常数项解答:解法一:(|x|+ 2)3=( |x|+2)(|x|+2)(|x|+ 2)得到常数项的情形有: 三个括号

15、中全取 2,得( 2)3; 一个括号取 |x|,一个括号取,一个括号取 2,得 C31C21( 2) = 12,常数项为( 2)3+( 12)=20解法二:(|x|+ 2)3=()6 设第 r+1 项为常数项,6就 Tr+1=C r.( 1) r.()r.|x|6 r=( 1) .Cr.|x|6 2r,得 62r=0,r=36 T3+1=( 1)3 .C663 =20点评:此题考查解决二项绽开式的特定项问题的重要工具有二项绽开式的通项公式;仍有分步乘法原理10( 4 分)求的值考点:极限及其运算专题:运算题分析:分子、分母同时除以3n,原式转化为,由此能求出的值解答:解:=0点评:此题考查数列

16、的极限和运算,解题时要留意合理地进行等价转化11( 4 分)要排一张有6 个唱歌节目和 4 个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必运算)考点:排列、组合及简洁计数问题专题:运算题分析:第一分析两个舞蹈节目不得相邻的排列法,可以猜想到用插空法求解, 然后分别求出舞蹈节目的排法及唱歌节目的排法,相乘即可得到答案解答:解:此题采纳插空法, 由于任何两个舞蹈节目不得相邻,即可把 6 个唱歌节目每个的前后当做精选名师 优秀名师 - - - - - - - - - -第 6 页,共 13 页 - - - - - - - - - -精品word 名师归纳

17、总结 - - - - - - - - - - - -蚂蚁文库7一个空位,共有7 个空位,只需把舞蹈节目支配到空位上就不会相邻了,共有P 4 种排法,舞种6蹈节目排好后再排唱歌节目共有A 67所以共有种 P 4.A 66 排法,6答案为 P74.A 6点评:此题主要考查排列组合及其简洁的计数问题,对于不相邻这种类型题目的求解,要想到可以用插空法求解,这种解题思路特别重要,要很好的懂得记忆12( 6 分)设画出函数 y=H(x 1)的图象考点:分段函数的解析式求法及其图象的作法;函数的图象分析:考查函数图象的变化, y=H( x 1)的图象是由 y=H(x)的图象向右平移一个图象得到的故可以先画出

18、 H(x)的图象然后再向右平移1 个单位得到 H(x1)的图象解答:解:点评:考查函数图象的平移问题记y=f( x),就 y=f (x+1),y=f (x1),y=f (x)+1, y=f(x ) 1 的图象,是由 y=f (x)图象分别向左,向右,向上,向下平移1 个单位得到的13( 6 分)画出极坐标方程的曲线考点:简洁曲线的极坐标方程专题:作图题分析:先将方程化简一下,然后依据极坐标方程的几何意义进行画图即可解答:解:方程 2=0 或 =0,即 =2 表示圆心在极点,半径为2 的圆=表示极角为的射线画出图象即可点评:此题主要考查了简洁曲线的极坐标方程,以及作图才能的考查,属于基础题14(

19、 12 分)已知三个平面两两相交,有三条交线,求证这三条交线交于一点或相互平行考点:平面与平面之间的位置关系专题:证明题;综合题分析:三个平面两两相交,有三条交线,这三条交线交于一点,或相互平行证明时要分三条交线交精选名师 优秀名师 - - - - - - - - - -第 7 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库于一点,和三条交线相互平行两种情形; (1)证三线交于一点时,先由两线交于一点,再证这一点也在第三条直线上; (2)证三线平行时,先由两线平行,再证第三条直线与这两条平行线中的任一条

20、直线平行即可解答:证明:设三个平面为,且 =c,=b,=a; =c,=b, c. ,b. ; c 与 b 交于一点,或相互平行( 1)如图 ,如 c 与 b 交于一点,可设cb=P由 Pc,且 c. ,有 P;又由 Pb,b. ,有 P; P=a;所以,直线 a,b,c 交于一点(即 P 点)图;图( 2)如图 ,如 c b,就由 b. ,且 c. , c;又由 c. ,且 =a, ca;所以 a, b, c 相互平行点评:此题考查了空间中的直线平行, 或相交的证明, 特殊是几何符号语言的应用, 是有难度的问题15( 12 分)设 c,d,x 为实数, c0,x 为未知数,争论方程在什么情形下

21、有解,有解时求出它的解考点:对数的运算性质;对数函数图象与性质的综合应用;根的存在性及根的个数判定分析:先将对数式转化为指数式,再依据对数函数的真数大于0,底数大于 0 且不等于 1 找到方程有根的等价条件后可解题解答:解:原方程有解的充要条件是:由条件( 4)知,所以 cx2+d=1 再由 c0,可得又由及 x0,知,即条件( 2)包含在条件( 1)及( 4)中再由条件( 3)及,知 x1因此,原条件可简化为以下的等价条件组:精选名师 优秀名师 - - - - - - - - - -第 8 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - -

22、 - - - - - - -蚂蚁文库由条件( 1)(6)知这个不等式仅在以下两种情形下成立: c0,1 d 0,即 c0,d1; c0,1 d 0,即 c0,d1、再由条件( 1)(5)及( 6)可知 c1d从而,当 c 0, d 1 且 c1d 时, 或者当 c0,d1 且 c1d 时,原方程有解,它的解是点评:此题主要考查对数式与指数式的互化和方程根的判定属中档题16( 12 分)设 p0,实系数一元二次方程z22pz+q=0 有两个虚数根 z1,z2、再设 z1,z2 在复平面内的对应点是 Z1,Z2,求以 Z1 ,Z2 为焦点且经过原点的椭圆的长轴的长考点:复数的基本概念;椭圆的简洁性

23、质专题:运算题分析:由题意两个虚数根z1,z2 是共轭复数, 可得椭圆的短轴长: 2b=|z1+z2|=2|p|,焦距为 2c=|z1 z2|然后求出长轴长解答:解:由于 p, q 为实数, p0,z1, z2 为虚数,所以( 2p)24q 0,qp20由 z1,z2 为共轭复数,知Z1, Z2 关于 x 轴对称,所以椭圆短轴在x 轴上,又由椭圆经过原点, 可知原点为椭圆短轴的一端点依据椭圆的性质,复数加,减法几何意义及一元二次方程根与系数的关系,可得椭圆的短轴长 =2b=|z1+z2|=2|p|,焦距离 =2c=|z1z2|=,长轴长 =2a=点评:此题考查复数的基本概念, 椭圆的基本性质,

24、 是小型综合题, 考查同学分析问题解决问题的才能17( 9 分)求经过定点M ( 1, 2),以 y 轴为准线,离心率为的椭圆的左顶点的轨迹方程考点:椭圆的标准方程;轨迹方程分析:先确定椭圆的位置,设左定点的坐标为A(x,y),然后依据离心率的含义得到左焦点的坐标,依据椭圆的其次定义确定方程解答:解:由于椭圆经过点M (1,2),且以 y 轴为准线,所以椭圆在 y 轴右侧,长轴平行于x 轴设椭圆左顶点为A (x,y),由于椭圆的离心率为,所以左顶点 A 到左焦点 F 的距离为 A 到 y 轴的距离的,从而左焦点 F 的坐标为设 d 为点 M 到 y 轴的距离,就 d=1依据及两点间距离公式,可

25、得精选名师 优秀名师 - - - - - - - - - -第 9 页,共 13 页 - - - - - - - - - -精品word 名师归纳总结 - - - - - - - - - - - -蚂蚁文库这就是所求的轨迹方程点评:此题主要考查椭圆方程的其次定义, 平面上到定点 F 距离与到定直线间距离之比为常数的点的集合18(12 分)在ABC 中, A ,B,C 所对的边分别为a,b,c,且 c=10,P 为ABC的内切圆上的动点,求点P 到顶点 A , B,C 的距离的平方和的最大值与最小值考点:三角函数的最值;正弦定理专题:运算题分析:利用正弦定理可求得,进而依据题设等式求得整理求得

26、A+B=判定出三角形为直角三角形,进而可利用勾股定理求得a 和 b,利用直角三角形的性质求得其内切圆的半径, 如图建立直角坐标系,就内切圆的方程可得,设出p 的坐标,表示出, S=|PA|2+|PB|2+|PC|2,利用 x 的范畴确定 S 的范畴,就最大和最小值可得解答:解:由,运用正弦定理,有, sinAcosA=sinBcosBsin2A=sin2B 由于 A B,所以 2A= 2B,即 A+B=由此可知 ABC 是直角三角形由 c=10, a2+b2=c2 以及 a0,b0 可得 a=6,b=8如图,设 ABC 的内切圆圆心为O', 切点分别为 D,E, F,就AD+DB+EC

27、=(10+8+6)=12但上式中 AD+DB=c=10 , 所以内切圆半径 r=EC=2, 如图建立坐标系,就内切圆方程为:( x 2) 2+(y2)2=4设圆上动点 P 的坐标为( x, y),就 S=|PA2| +|PB|2+|PC|2=(x8)2+y2+x2+(y6)2+x2 +y2=3x2+3y2 16x12y+100=3(x2)2+(y 2) 2 4x+76精选名师 优秀名师 - - - - - - - - - -第 10 页,共 13 页 - - - - - - - - - -=3×44x+76=884x精品word 名师归纳总结 - - - - - - - - - -

28、- -蚂蚁文库由于 P 点在内切圆上,所以0x4,S 最大值 =88 0=88,S 最小值 =88 16=72点评:此题主要考查了三角函数求最值的问题,直角三角形内切圆的问题, 圆的性质问题 考查了同学基础学问的综合应用19( 12 分)设 a2,给定数列 x n ,其中 x1=a,求证:( 1) xn2,且;( 2)假如 a3,那么考点:用数学归纳法证明不等式专题:运算题;压轴题分析:( 1)我们用数学归纳法进行证明,先证明不等式xn2 当 n=1 时成立,再假设不等式xn 2当 n=k(k1)时成立,进而证明当n=k+1 时,不等式 xk+1 2 也成立,最终得到不等式xn 2对于全部的正整数n 成立;( 2)我们用数学归纳法进行证明,先证明不等式当 n=1 时成立,再假设不等式当 n=k( k1)时成立,进而证明当n=k+1 时,不等式也成立,最终得到不等式对于全部的正整数n 成立;解答:证明:(1) 当 n=1 时,=,=2+,x1=a 2, 2 x2x 1 结论成立 假设 n=k 时,结论成立,即2xk+1xk(kN+), 就= xk+1 ,=2+ 2 2 xk+2xk+1,综上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论