![求数列通项公式方法经典总结_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/9/17f2dd7d-b22d-4e07-826e-d2b23262fc0e/17f2dd7d-b22d-4e07-826e-d2b23262fc0e1.gif)
![求数列通项公式方法经典总结_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/9/17f2dd7d-b22d-4e07-826e-d2b23262fc0e/17f2dd7d-b22d-4e07-826e-d2b23262fc0e2.gif)
![求数列通项公式方法经典总结_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/9/17f2dd7d-b22d-4e07-826e-d2b23262fc0e/17f2dd7d-b22d-4e07-826e-d2b23262fc0e3.gif)
![求数列通项公式方法经典总结_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/9/17f2dd7d-b22d-4e07-826e-d2b23262fc0e/17f2dd7d-b22d-4e07-826e-d2b23262fc0e4.gif)
![求数列通项公式方法经典总结_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/9/17f2dd7d-b22d-4e07-826e-d2b23262fc0e/17f2dd7d-b22d-4e07-826e-d2b23262fc0e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上求数列通项公式方法(1)公式法(定义法)根据等差数列、等比数列的定义求通项例:1已知等差数列满足:, 求;2.已知数列满足,求数列的通项公式; 3.数列满足=8, (),求数列的通项公式;4. 已知数列满足,求数列的通项公式;5.设数列满足且,求的通项公式6. 已知数列满足,求数列的通项公式。7.等比数列的各项均为正数,且,求数列的通项公式8. 已知数列满足,求数列的通项公式;9.已知数列满足 (),求数列的通项公式;10.已知数列满足且(),求数列的通项公式;11. 已知数列满足且(),求数列的通项公式;12.数列已知数列满足则数列的通项公式= (2)累加法1、累加
2、法 适用于: 若,则 两边分别相加得 例:1.已知数列满足,求数列的通项公式。2. 已知数列满足,求数列的通项公式。3.已知数列满足,求数列的通项公式。4.设数列满足,求数列的通项公式(3)累乘法适用于: 若,则两边分别相乘得,例:1. 已知数列满足,求数列的通项公式。2.已知数列满足,求。3.已知, ,求。(4)待定系数法 适用于解题基本步骤:1、确定2、设等比数列,公比为3、列出关系式4、比较系数求,5、解得数列的通项公式6、解得数列的通项公式例:1. 已知数列中,求数列的通项公式。2.(2006,重庆,文,14)在数列中,若,则该数列的通项_3.(2006. 福建.理22.本小题满分14
3、分)已知数列满足求数列的通项公式;4.已知数列满足,求数列的通项公式。解:设5. 已知数列满足,求数列的通项公式。解:设6.已知数列中,,,求7. 已知数列满足,求数列的通项公式。解:设 8. 已知数列满足,求数列的通项公式。递推公式为(其中p,q均为常数)。先把原递推公式转化为其中s,t满足9. 已知数列满足,求数列的通项公式。10.已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;11.已知数列中,,,求(5)递推公式中既有 分析:把已知关系通过转化为数列或的递推关系,然后采用相应的方法求解。1.(2005北京卷)数列an的前n项和为Sn,且a1=1,n=1,2,3,求a2
4、,a3,a4的值及数列an的通项公式 2.(2005山东卷)已知数列的首项前项和为,且,证明数列是等比数列3已知数列中,前和求证:数列是等差数列求数列的通项公式4. 已知数列的各项均为正数,且前n项和满足,且成等比数列,求数列的通项公式。(6)根据条件找与项关系例1.已知数列中,若,求数列的通项公式2.(2009全国卷理)在数列中,(I)设,求数列的通项公式(7)倒数变换法 适用于分式关系的递推公式,分子只有一项例:1. 已知数列满足,求数列的通项公式。(8)对无穷递推数列消项得到第与项的关系例:1. (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。2.设数列满足,求数列的通项;(8)、迭代法例:1.已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。(9)、变性转化法1、对数变换法 适用于指数关系的递推公式例: 已知数列满足,求数列的通项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度国产打印机节能环保认证采购合同
- 重庆2025年重庆市北碚区基层医疗卫生事业单位招聘14人笔试历年参考题库附带答案详解
- 酒泉2025年甘肃酒泉市公安局招聘留置看护岗位辅警60人笔试历年参考题库附带答案详解
- 贵州2025年贵州省文化和旅游厅直属事业单位招聘12人笔试历年参考题库附带答案详解
- 玉林2025年广西玉林市第一人民医院招聘24人笔试历年参考题库附带答案详解
- 漯河2024年河南漯河市立医院(漯河市骨科医院漯河医专二附院)招聘高层次人才笔试历年参考题库附带答案详解
- 海口海南海口市琼山区教育局招聘2025届师范毕业生笔试历年参考题库附带答案详解
- 河北2024年中国工商银行河北分行乡村振兴专项招聘20人笔试历年参考题库附带答案详解
- 2025年中国太阳能十字路口单黄闪警示灯市场调查研究报告
- 2025年艾纳素项目可行性研究报告
- 光缆线路施工安全协议书范本
- 成本合约规划培训
- 山东省济宁市2025届高三历史一轮复习高考仿真试卷 含答案
- 五年级数学(小数乘法)计算题专项练习及答案
- 交通法规教育课件
- 产前诊断室护理工作总结
- 6S管理知识培训课件
- 小学校长任期五年工作目标(2024年-2029年)
- 医院培训课件:《猴痘流行病学特点及中国大陆首例猴痘病例调查处置》
- 氢气-安全技术说明书MSDS
- 产科护士临床思维能力培养
评论
0/150
提交评论