气溶胶形成机理和污染现状_第1页
气溶胶形成机理和污染现状_第2页
气溶胶形成机理和污染现状_第3页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、气溶胶污染物的形成机理和污染状况摘要 :本文主要介绍有机气溶胶来源与形成的研究现状,有机气溶胶的化学组成特征。一次有机气溶胶主要源于烹调油烟、 机动车尾气、 生物质燃烧、 工业或民用燃油锅炉释放出的有机 物,还有道路扬尘、沥青、刹车尘、轮胎屑、室外香烟烟雾、以及高等植物蜡、细菌活动和 草本植物等 . 大气中的半挥发性有机物可通过物理和化学吸附形成二次有机气溶胶, 一些挥发性有机物可通过气相化学反响转化为低挥发性的物质并形成二次有机气溶胶,其主要前体物是芳香族化合物 ,如苯、甲苯、二甲苯 ,以及烯烃、烷烃、环烷烃、萜烯和生物排放的非饱 和氧化物 .关键词 :一次有机气溶胶 二次有机气溶胶 ;挥发

2、性有机物 ;半挥发性有机物 ; 颗粒物 ;有机碳Abstract : This paper describes the organic aerosol sources and research status, the formation of organic aerosol chemical composition characteristics. Once organic aerosols mainly from cooking fumes, vehicle exhaust, biomass burning, industrial or commercial release of organ

3、ic oil-fired boilers, as well as road dust, asphalt, brake dust, tire debris, outdoor cigarette smoke, as well as higher plant waxes, bacterial activity and herbs, etc. semi-volatile organic compounds in the atmosphere to form secondary organic aerosols through physical and chemical adsorption, a nu

4、mber of volatile organic compounds by gas-phase chemical reactions into a low volatile matter and the formation of secondary organic aerosol , the main precursors of aromatic compounds such as benzene, toluene, xylene, and olefins, paraffins, naphthenes, and unsaturated terpene oxides biological emi

5、ssions.Keywords: secondary organic aerosols; volatile organic compounds ; semivolatile organic compounds ; particle; organic carbon有机气溶胶是大气气溶胶的重要成分,在偏远地区大约占PM10的30%50%,在污染严重的城市地区一般占 PM2. 5和PM10质量的20%60% .无论在污染地区还是在偏远地区,有机气溶胶都是由数百种有机化合物组成的混合物 ,其中很多具致癌、致畸和致突变性 ,如多氯 联苯和其它含氯有机化合物 . 它们还能够影响大气能见度 ,是导致大气光化

6、学烟雾、 酸沉降的 重要物质 ,可通过长距离传输对区域和全球环境产生影响. 因此 ,国际上非常重视大气中有机气溶胶的来源与形成机制的研究 ,目前主要集中在浓度和化学组分的测量、成因和来源以及产生的环境效应 .随着我国经济的高速开展 ,我国出现了城市和区域性大气颗粒物污染现象 有机气溶胶日益成为大气污染控制的关键污染物和控制的难点 有机气溶胶的化学组成特征 ( Chemicalcomposition of organic aerosols)根据目前 GC2MS 测量的技术水平已经鉴别出有机气溶胶含有正构烷烃、正构烷酸、正 构烷醛、脂肪族二元羧酸、双萜酸、芳香族多元羧酸、多环芳烃、多环芳酮和多环芳

7、琨、甾 醇化合物、含氮化合物、规那么的甾烷、五环三萜烷以及异烷烃和反异烷烃等 (Mazurek et al. ,1989;HHildemann et a l. ,1993; Rogge et al. , 1993e) ,表1给出了在大气颗粒物中已经被测 出的以及根据光化学和热力学反响计算出的应该存在的有机物种( Saxena et a l. ,1996) ,但识别出的这几百种有机化合物仅占颗粒物有机质量的10%40% ( Seinfeld et al. , 1998).Rogge等(1993e)检测出的80多种有机化合物约占总有机物的13%,只占细粒子质量的大约 2%.未鉴别出的局部包括腐殖酸

8、、 高分子量化合物、 高极性化合物和不能分辨的环烷烃和支链烷 烃混合物 . 因此 ,人们对有机气溶胶的化学组成、 浓度水平和形成机制还了解得很不清楚大气 颗粒物中的含碳物质按测量方法定义为有机碳(OC)和元素碳(EC).有机碳是碳氢化合物及其氧化物的混合物 ,占有颗粒碳的大局部 ,既有一次源也有二次源 ; 元素碳本质上是一次污染 物,直接由化石燃料或生物含碳物质不完全燃烧排放 .元素碳在大气颗粒物中通常包裹在有机物内部,因此,很难完全区分开元素碳和有机碳目前,关于不同排放源OC /EC比值清单已有一些报道 Gray等(1986)建立了 Los Angeles盆地的OC、EC排放清单,并建议与此

9、有机碳相 关的总有机物的质量浓度为有机碳浓度乘以 1. 21. 4,因此,有机碳通常被认为是表征有机物 气溶胶浓度水平的一个指标 .粒径分布是大气颗粒物的重要特征 ,它决定了颗粒物自身的性质 和环境效应 . 颗粒物中某种化学组分的粒径分布特征反映出其来源 ,也决定了其在大气中的 物理和化学行为.颗粒物中含碳物质粒径一般分布在0. 15呵范围(唐孝炎等,1990),这主要是由含碳物质的来源和形成过程所决定的 . 大气颗粒有机物主要分布在亚微米粒径范围内,但质量分布呈现典型的双峰态,峰值在0. 2(im和1呵左右(Pickle et al. , 1990; Mylonas et al., 1991

10、 ).Offe nberg 等(2000)研究了 5 个粒径范围内(0. 15、0. 45、1.4、4. 1 和 12. 2 m)的含 碳颗粒物,结果发现粒径在0. 150. 45呵间的有机物占颗粒物总质量的 49% ,而粒径大于12 呵的有机物只占3%.一次有机气溶胶的来源 ( Sources of p rimaryorganic aerosols)一次有机气溶胶的主要人为源是化石燃料和生物质的不完全燃烧,如汽油、柴油、煤、森林及草原大火、农产品残渣、木材及树叶、抽烟以及垃圾燃烧等燃烧过程的直接排放,这些过程主要释放细粒子(粒径 10 pm);其主要的天然源是植物排放和天然大火.另外,生物的

11、排放 ,如高等植物蜡、空气中悬浮的花粉和细菌、真菌孢子等微生物,植物草木碎片和土壤有机物质的风蚀作用所产生的一次有机气溶胶 ,以及某些工业活动 ,如石油精炼、焦炭和沥青生 产、轮胎橡胶的磨损等非燃烧过程排放的一次有机气溶胶,主要形成粗颗粒模态 . 随着人类活动的不断增加 ,人为源对有机气溶胶的奉献越来越大.有机碳在土壤来源、地壳奉献中一般占5% 15% ,在汽油车排放中大约占 70% ,在柴油车排放中大约占 40% ,在居民木柴燃烧排放 以及森林火灾排放中大约占 50%, 在居民燃煤排放中大约占 70% ,燃煤电厂排放中大约占 2% 34% ,这取决于污染控制的技术水平 (Chow, 1995

12、). 因此 ,污染源直接排放形成的有机 碳因污染源类型的不同而不同 . 燃烧过程如生物质燃烧、机动车尾气、各种燃油、燃煤、冶 炼等排放的污染物中 ,有机碳和元素碳一般是伴生而存在的,而道路、土壤、建筑扬尘以及湖泊底泥等非燃烧过程排放的污染物中 ,有机碳一般是单独存在的 . 燃烧过程中 ,燃料中的有机 组分有的可能会直接排放,如VOC,有的那么发生氧化、裂解,转化生成新的物质.元素碳是燃料 不完全燃烧的产物 ,或者是有机组分裂解的产物,在大气中相对较稳定 ;由于燃烧源排放的有机碳和元素碳存在相伴生的特点 ,近年来有机碳和元素碳被用以识别含碳气溶胶的污染来源并进行二次气溶胶判别与估算 (Castr

13、o et al. , 1999). 烹调油烟是城市气溶胶的重要来源 . 肉类烹饪产生的细粒子的排放速率要高于蔬菜烹饪23个数量级,所有食物操作过程产生的细粒子中主要化学组成都是有机碳 ,在肉类操作中没有检测到元素碳 ,而蔬菜操作中排放的元素 碳占细粒子的比例不到 4%. 肉类操作中排放的细粒子中主要的有机化合物为正烷酸、正烯 酸, 还有正烷醛和正烯醛、正烷酮、呋喃酮和胆甾醇;而蔬菜操作中主要化合物为正烷酸和正烯酸 ,还有少量正烷醛和正烯醛 ,没有检测到胆甾醇 . 肉类物质中的有机物在加热、光照下以 及在金属和不饱和脂存在下会脱氢形成R,这些自由基与氧反响形成过氧自由基(R00 ,过氧自由基再与

14、其它不饱和脂反响形成RCOOH然后发生一系列断裂,生成大量的断裂产物如醛、酮、醇、烃、酯、呋喃和呋喃酮等 (Rogge et a l. , 1991). 植物油和肉类脂肪中主要成分 是脂肪酸甘油酯 ,在烹饪过程中通过水解和氧化会释放大量的十六酸和十八酸,因此 ,在食物烹饪操作中排放量最大的化合物为正十六烷酸、正十八烷酸、顺2 92十八烯酸 (油酸 )和顺292122十八二烯酸 (亚油酸 )等. 胆甾醇是动物甾醇的典型代表 ,存在于动物脂肪中 ,在肉类食 物烹饪过程中可以直接释放出来 ,未检测到其热解产物 (Chow, 1995). 研究说明 ,洛杉矶地区 肉类烹调释放的有机气溶胶占一次有机气溶

15、胶总量的 21% ,所检出的有机物包括烷烃、脂肪 酸、不饱和脂肪酸、二元酸、壬醛、PAHs、呋喃、内脂、醇类、烯烃、类固醇、酰胺等机动车排放是重要的颗粒有机物污染源.Rogge等(1993a)和Schauer等 ( 1999; 2002)利用台架测试指出 ,柴油车和无催化装置汽车的细粒子排放速率比拟高,而有催化装置汽车的排放速率非常低 .机动车排放的主要化学组分都是有机碳和元素碳,柴油车排放的元素碳含量明显高于汽油车排放 ,而有催化装置汽油车的元素碳排放要高于无催化装置汽油车;对有机碳来说 ,汽油车的排放要明显高于柴油车 ,无催化装置汽车排放的有机碳占细粒子的65%以上 . 机动车排放的主要有

16、机化合物分别为烷烃、烷酸、多环芳烃和二烯酸. 20世纪 80年代中期的研究结果说明,无催化装置汽车的多环芳烃排放速率最高,超过有催化装置汽车的 26倍以上 ,而大多数正烷酸主要是由有催化装置的汽车排放的;重型柴油车具有高的正烷烃和正烷酸排放率(Rogge et a l. , 1993a). 20世纪90年代中期的研究结果说明 ,中型柴油车排放最高量的是多环芳烃 ,其次为烷酸和烷烃 ,而无催化汽车主要排放多环芳烃和烷烃,有催化装置的汽车主要排放高分子量二元羧酸 (十八碳二酸和十九碳二酸 )和烷烃 . 可见 ,机动车的类型、 燃料组成和有 无催化装置都会对颗粒有机物的排放量和化学组成特征有很大影响

17、 .生物质燃烧正日益受到 全球关注 . 据统计 ,生物质燃烧排放的颗粒物、 有机碳和元素碳分别占大气颗粒物总量的7%、39%和 86%. 大局部生物质燃烧是以热带草原大火和森林大火的形式发生 ,农田秸秆燃烧是 生物质燃烧的第 2种主要形式 . 木柴燃烧是美国重要的细粒子污染源 . 不同的地区燃烧的木 柴类型是不同的,利用稀释通道采样方法,Fine等(2001; 2002)研究了美国南部和东北部主要 树种燃烧排放的细粒子有机物;Hays等(2002)研究了不同树叶燃烧排放的细粒子有机物;Schauer 等(2001)研究了洛杉矶地区家庭取暖主要使用的木柴燃烧排放的细粒子有机物;Oros等人(20

18、01a;2001b)采用在污染源下风向直接采样的方法研究了不同树种野外燃烧排放的有机物 . 木柴燃烧排放的有机气溶胶的组成与燃烧实验相关 ,壁炉实验产生的左旋葡聚糖 是含量最高的有机化合物,硬木燃烧排放中第 2大类物种是甲氧基酚类化合物,而软木燃烧排放的是甲氧基酚类化合物或二萜类化合物 ;野外实验中 ,硬木燃烧排放量最大的是羧酸类化合 物,其次为烷烃、甲氧基酚类化合物,软木燃烧排放量最大的是二萜类化合物,其次为羧酸、甲氧基酚类化合物 . 与壁炉实验相比 ,野外实验中左旋葡聚糖所占比例明显下降,甲氧基酚比例也下降 ,而二萜类和三萜类化合物比例上升. 壁炉实验和野外实验的差异来自燃烧条件的不同 ,

19、壁炉燃烧时温度相对较高,燃烧比拟充分 ,可以产生较多高温热解产物,如左旋葡聚糖 ; 而野外实验那么采用大火和焖烧2种方式 ,产生较多的天然产物如羧酸、 烷烃和一些二萜类化合物 .研究说明 ,麦收季节农田秸秆燃烧对北京市区有机碳的奉献高达40% (Duanet al. , 2004) ;美国洛杉矶地区居民木柴燃烧排放的有机物占一次有机气溶胶的 14% , 冬季可达 30%;丹佛地区 冬季约20%30%的细颗粒物来自木柴燃烧 (Rogge et a l. , 1998).工业或民用燃油锅炉释放出的有机物中 脂肪酸占42%52%,苯酸占6%23%,烷烃占7%25% ,多环芳烃及其同 系物占3%9%,

20、氯化物占6%16%.烷烃碳数范围是C19C33,主碳数为C21、C23,可能 来自油品中烷烃的直接排放或者其它化合物燃烧过程的转化 . 脂肪酸碳数一般小于 C18, 以 C16和C18为主要物种(Rogge et a I. ,1997b).有机氯化物在燃油过程中可能发生热裂解,产物作为催化剂可能会促进元素碳以及多环芳烃的形成燃料中CI含量的增加不仅导致PAHs浓度增加 ,还可能进一步产生毒性更大的有机氯化芳香化合物.城市有机气溶胶的另外一些来源包括道路扬尘、沥青、刹车尘、轮胎屑、室外香烟烟雾 ,以及高等植物蜡、细菌活动和草 本植物等 . 在轮胎屑和道路尘中 ,主要有机化合物为烷烃和烷酸;轮胎屑

21、中天然树脂是很重要的组成,而刹车尘中有痕量的天然树脂(Rogge et aI. , 1993b). 机动车刹车垫的磨损产生的有机物包括少量烷烃(C19C36)、短链脂肪酸(C6C9)及PAH,还包括可溶性的聚烯二醇醚和 三乙基乙二醇醚等 . 香烟烟雾中有大量的氮杂环化合物 ,其中尼古丁占氮杂环化合物的 69%. 植物碎屑中 ,含量最高的化合物类别是正烷烃,其次为正烷醛和正烷醇二次有机气溶胶形成机制 ( Formation mechanismof secondary organic aerosoIs) 二次有机气溶胶的形成是指气相中的有机气体氧化形成的低挥发性产物在粒子外表的浓缩、 吸附 ,即挥

22、发性有机物被氧化成半挥发性有机物和半挥发性有机物分配到颗粒相. 形成的二次有机气溶胶大多存在于粒径小于2 m的细颗粒物中挥发性有机物从气相到颗粒相的转化主要有 3种机制 ( Pandis et aI. , 1992; Pankow, 1994). 第一,可挥发有机物在浓度超过饱和蒸汽 压时 ,低饱和蒸气压的有机物凝结在颗粒物上形成二次气溶胶;第二,气态有机物在颗粒物外表以物理或化学过程吸附或吸收在颗粒物的内部,此过程可发生在亚饱和状态(L igocki et aI. ,1989; Pankow, 1987) ; 第三 ,气态有机物在大气环境中发生氧化生成低挥发性物质,进而生成二次颗粒物 . 光

23、化学烟雾是形成二次气溶胶的重要途径 ,其主要产物为有机硝酸脂和复杂有.半挥发性有机物通过物理和机化合物 . 天然源和人为源有机气体均可形成二次有机气溶胶化学吸附可形成二次有机气溶胶通常将饱和蒸汽压低于临界蒸汽压4000Pa的物质称为半挥发性物质 . 由于蒸汽压的限制 ,并不是所有存在于大气中的 VOCs 都能形成大气气溶胶 . 一 般认为 , 6个碳以下的烷烃 甲烷到正己烷异构体 、6个碳以下的烯烃 乙烯到己烯异构体 、 苯以及低分子量的羧基化合物等都不能产生有机颗粒物 . 半挥发性有机物存在于气态 ,直到 其浓度到达某个临界值时 ,吸附到适宜的颗粒物外表或通过均相成核进入颗粒态,此时 ,半挥

24、发性有机物在气相与颗粒相之间便到达热力学平衡 . 可用 Langmuir 等温吸附理论定量描述 大气中有机物的气固分配 ,有学者认为 ,颗粒物对有机物的吸附是由有机物的蒸汽压和颗粒物 的外表积控制 Pankow,1994. 但有机物究竟是吸附在类似于液体有机膜的颗粒物外表上,还是吸附在颗粒外表的活性点上,或是二者的混合吸附 ,目前还没有结论 . 但已经清楚的是 ,不同来源的颗粒物有不同的吸附特性 ,湿度对吸附有影响 ,可用化合物的液相蒸汽压或辛醇2空气分配系数描述化合物间的差异和温度的影响.大气环境中的气态有机物可通过气相化学反响转化为低挥发性的物质并形成二次有机气溶胶.一定条件下 ,大气反响

25、的产物也可以发生成核过程而产生新的颗粒物 ,例如萜烯与臭氧反响的产物Kamens et al. , 1999. 气态有机物在大气环境中还可通过颗粒物上的异相反响形成二次颗粒物 . 气相反响产物进入颗粒相后 ,将与 气态氧化剂发生进一步反响生成另一代产物 ; 通常 ,酸类对这些异相将起到催化作用,主要的催化剂有硫酸和硝酸 . 这些酸催化反响包括水合作用、聚合作用、半缩醛和缩醛反响、醇醛 缩合 .形成二次有机气溶胶的有机前体物种类很多,如烷烃、烯烃、芳香烃和酚类等,它们主要来自人为源如化石燃料燃烧、生物质燃烧、有机溶剂的使用,以及自然源如植物排放、海洋源等. 已有研究说明 ,形成二次有机气溶胶的主

26、要前体物是芳香族化合物如苯、甲苯、二甲苯 ,以及烯烃、烷烃、环烷烃、萜烯和生物排放的非饱和氧化物. 据估计 ,城市二次气溶胶的50%70%是来自甲苯、二甲苯、三甲苯等化合物.树木等植被排放的天然源碳氢化合物也是二次有机气溶胶的重要前体物 ,包括萜烯a -蒎烯、B -蒎烯、柠檬烯和倍萜烯,还有异戊二烯 . 二次有机气溶胶形成的通常只有碳数在7以上的有机物才能生成二次颗粒物( Fostner et al. , 1997; Limbeck et a l. , 1999; Holes et a l. , 1997; Blando et al. , 1998).有机前体 物的氧化包括气相和液相氧化2个途

27、径 , 主要的气态氧化剂是臭氧、 OH- 和 NO-3(Grosjean etal. , 1989; Odum et a l. , 1996; Griffin et al. , 1999) ,它们均是光化学反响的产物. 有机前体物通过氧化反响生成的产物可能包括脂肪酸、二元羧酸、醇类以及醛类等,它们通常具有较高的极性和分子量 ,从而减小其挥发性 . 而且 ,这些化合物主要是中间产物 ,需要继续氧化成半挥 发性组分才能进入颗粒态 . 在一定的条件下 ,大气反响的产物也可以发生成核过程而产生新 的颗粒物 ,例如萜烯与臭氧反响的产物 .近年的研究说明 ,不少 VOCs 可能在云或雾滴中通过液 相氧化反

28、响生成二次有机气溶胶 . 液相氧化反响包括 VOCs 等有机前体物溶于液滴 ,随后被氧 化成半挥发性有机物 . 一般而言 ,污染源尤其是人为污染源所释放的VOCs 多数难溶于水 . 经过气相氧化反响生成溶解性较强的脂肪酸、二元羧酸、醇类以及醛类等化合物,进而可以溶于雾滴中参与液相氧化反响 Biando等(1998; 2000)发现,云水雾滴中确实存在脂肪酸、二元羧酸、醇类以及醛类等化合物 . 这些化合物大多既存在于气态 ,又存在于液态 ,说明可溶性 VOC 参与云水或雾滴反响是可能的Aumount 等(2000)认为,云水中的高浓度有机酸主要来自液相氧化反响 二次有机气溶胶形成的另一个步骤包括凝结、吸收和吸附等途径 凝结是最简单的气粒转化物理过程 ,不涉及 VOC 与气溶胶粒子之间的相互作用,可称为均相成核过程 ,类似于无机二次气溶胶如硫酸盐的形成 早期研究认为 ,该过程是其气 2粒转化的主要过程 然而 , 近期一些研究说明,异相成核过程即VOCs在气溶胶颗粒上的吸收或吸附过程,才是气粒转化 的主导过程(Odum et al. , 1996; 1997a;1997b).与前者比拟,异相成核过程既取决于 VOCs的性 质,又与作为吸附点的气溶胶颗粒有关.Odum等(1996)通过烟雾箱模拟实验说明,气溶胶的量与有机气溶胶质量浓度密切相关 ,认为吸收或吸附过程是气粒转化的主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论