版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上平面解析几何初步单元测试卷一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分)1.(原创)已知点,则直线AB的倾斜角为( )A B C D1. 【答案】D,【解析】因为直线AB的斜率为,所以直线AB的倾斜角为,选D.2.(原创)若直线经过圆C:的圆心,则实数的值为( )A0 B2 C-2 D-12.【答案】C,【解析】因为圆C:的圆心为(1,-1),所以直线过点(1,-1),所以,选C.2(原创)圆的圆心到直线的距离为()AB1CD2.【答案】A,【解析】直线的直角方程为,所以圆心到直线的距离为,选A.3.(原创)若关于
2、x、y的方程组无实数解,则实数的值为( )AB1 C- D-13.【答案】A,【解析】由已知得直线与直线平行,所以,解得,选A.4.(原创)当a为任意实数时,直线恒过定点M,则以M为圆心,半径为1的圆的方程为( )A BC D4.【答案】D,【解析】直线的方程可变形为,令,解得,即定点M(1,-2),所以圆的方程为,即,选D.5.(原创)已知直线与直线垂直,且与圆C:相切,则直线的方程是( )A. B.或C. D.或5.【答案】B,【解析】由于直线与直线垂直,于是可设直线的方程为,由圆C:的圆心坐标为(-1,0),半径为1,所以,解得或,选B.6.(原创)与圆:和圆:都相切的直线共有( )A.
3、1条 B.2条 C.3条 D.4条6.【答案】C,【解析】圆的方程化为标准式为,所以两圆心间的距离为,且,所以两圆相交,故与两圆都相切的直线共有3条,选C.8.(原创)已知动点在直线上,则的最小值为( )A.4 B.3 C.2 D.18.【答案】B,【解析】因为,其中表示直线上的动点到定点B(-1,0)的距离,其最小值为点B(-1,0)到直线可以看成是原点到直线的距离,即=,所以的最小值为3,故选B.9.过圆外一点作圆的两条切线,切点分别为,则的外接圆方程是( )A BC D9.【答案】A,【解析】根据题意,过圆外一点作圆的两条切线,切点分别为,设直线PA:y-2=k(x-4),利用圆心到直线
4、的距离为半径2,可知圆心与点P的中点为圆心(2,1),半径为OP距离的一半,即为,故选A.9.已知直线:,若以点为圆心的圆与直线相切于点,且在轴上,则该圆的方程为()ABCD9.【答案】A,【解析】 由题意,又直线与圆相切于点,且直线的倾斜角为,所以点的坐标为,,于是所求圆的方程为,故选A.9.若直线与曲线有公共点,则b的取值范围是( )A., B.,3C.-1, D.,3;9.【答案】D,【解析】由曲线可知其图像不以(2,3)为圆心,半径为2的半圆,故直线与之有公共点介于图中两直线之间,求得直线与半圆相切时,直线过点(0,3)时有一个交点.故选D.9.(原创)已知圆,直线,则直线与圆的位置关
5、系是()A一定相离B一定相切C相交且一定不过圆心 D相交且可能过圆心9.【答案】C,【解析】圆的标准方程为,圆心为,半径为.直线恒过定点,圆心到定点的距离,所以定点在圆内,所以直线和圆相交.定点和圆心都在直线上,且直线的斜率存在,所以直线一定不过圆心,选C.二、填空题(本大题共4各小题,每小题5分,共20分)13.(原创)若直线l的倾斜角为135°,在x轴上的截距为,则直线l的一般式方程为 .13.【答案】,【解析】直线的斜率为,所以满足条件的直线方程为,即.14.(原创)直线与直线关于点对称,则_.14.【答案】0,【解析】由于两直线关于点对称,两直线平行,故,解得;由直线上的点A
6、(-1,0)关于点的对称点(5,2)在直线上,所以,解得.故0.15.已知直线平分圆的面积,且直线与圆相切,则 .15.【答案】,【解析】根据题意,由于直线平分圆的面积,即可知圆心(7,-5)在直线上,即m=.同时利用直线与圆相切,可得圆心(1,2)到直线的距离等于圆的半径,即d=,所以3.16.(原创)设圆的切线与轴正半轴,轴正半轴分别交于点,当取最小值时,切线在轴上的截距为 .16.,解析:设直线与坐标轴的交点分别为,显然,则直线:,依题意:,即,所以,所以,设,则.设,则,又,故当时,单调递减;当时,单调递增;所以当,时,有最小值三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题
7、共6小题,共70分)17.(本小题10分)(原创)已知圆C过两点M(2,0)和N(0,4),且圆心在直线上.求圆C的方程;已知过点的直线l被圆C截得的弦长为4,求直线l的方程.17.【解析】由题可知,圆心C落在线段MN的垂直平分线上,且直线MN垂直平分线方程为,于是解方程组,可得圆心C的坐标为(1,2),且圆的半径为MC=,所以圆C的方程为.因为圆心C的坐标为(1,2),半径为,所以圆心到直线的距离为.当直线的斜率不存在时,其方程为,满足题意;当直线的斜率存在时,设直线方程为,即,由,解得,此时方程为,即.综上可得,直线的方程为或.18.已知圆M:与轴相切。求的值;求圆M在轴上截得的弦长;若点
8、是直线上的动点,过点作直线与圆M相切,为切点,求四边形面积的最小值.18.【解析】令,有,由题意知,即的值为4.设与轴交于,令有(),则是()式的两个根,则,所以在轴上截得的弦长为. 由数形结合知:,PM的最小值等于点M到直线的距离,即,即四边形PAMB的面积的最小值为.18. (本小题12分)(原创)在平面直角坐标系中,已知圆:,过点且斜率为的直线与圆相交于不同的两点,线段的中点为.求的取值范围;若,求的值.18.解:方法1:圆的方程可化为,直线可设为,即,圆心到直线的距离为,依题意,即,解之得:.方法2:由可得:,依题意,解之得: 方法1:因为,且斜率为,故直线:,由可得,又是中点,所以,
9、即,解之得:方法2:设,则,由可得:,所以,又,且斜率为,所以,即,也就是,所以,解之得:方法3:点的坐标同时满足,解此方程组,消去可得19.(本小题12分)(原创)设为坐标原点,已知直线,是直线上的点,过点作的垂线与以为直径的圆交于两点.若,求圆的方程;若是直线上的动点,求证:点在定圆上,并求该定圆的方程。19.【解析】设,则圆的方程:,直线的方程:, , ,.圆的方程:或.解法1:设,由知:,即:,消去得:=2,点在定圆=2上.解法2:设,则直线FP的斜率为,FPOM,直线OM的斜率为,直线OM的方程为:,点M的坐标为, MPOP, ,=2,点在定圆=2上20.(本小题12分)(原创)在平面直角坐标系中,已知圆心在轴上、半径为的圆位于轴右侧,且与直线相切. 求圆的方程;在圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由20.【解析】设圆心是,它到直线的距离是,解得或(舍去),所求圆的方程是.(2)点在圆上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024电子商务平台服务居间协议
- 2024美发沙龙个人聘用协议样本
- 2024挖掘机购销协议范本
- 2024智能家居设备安装服务协议
- 2024年度纪录片后期制作服务协议
- 夫妻双方房产分割自愿离婚协议格式
- 2024物业管理室内装修协议
- 2024年度XX项目股权投资协议
- 2024计算机软件销售代理协议样本
- 辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)
- 大唐之美通用模板
- ABS装置湿法挤出机系统存在的问题研究及对策的中期报告
- 《肉牛营养需要》教学课件
- 网易云音乐用户满意度调查问卷
- 雪佛兰爱唯欧说明书
- 经营分析报告案例-麦肯锡风格
- 2023春国开会计实务专题形考任务1-4题库及答案汇总
- 可疑值的取舍-Q检验法
- 生物信息学(上海海洋大学)知到章节答案智慧树2023年
- 核磁共振T临床应用
- 文件与文件夹测试题(含参考答案)
评论
0/150
提交评论