




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上【规律方法】动能 动能定理【例1】如图所示,质量为m的物体与转台之间的摩擦系数为,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少? 解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力mg根据牛顿第二定律mg=mv2/R由动能定理得:W=mv2 由得:W=mgR,所以在这过程摩擦力做功为mgR点评:(1)些变力做功,不能用 WFscos求,应当善于用动能定理(2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑
2、整个过程的功量及过程始末的动能若过程包含了几个运动性质不同的分过程既可分段考虑,也可整个过程考虑但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功计算时要把各力的功连同符号(正负)同代入公式【例2】质量为m的物体从h高处由静止落下,然后陷入泥土中深度为h后静止,求阻力做功为多少? 提示:整个过程动能增量为零,则根据动能定理mg(hh)Wf0所以Wfmg(hh)答案:mg(hh)(一)动能定理应用的基本步骤应用动能定理涉及个过程,两个状态所谓个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能动能定理应用的基本步骤是:选取研究对象,明确并分析运动过程
3、分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和明确过程始末状态的动能Ek1及EK2列方程 W=,必要时注意分析题目的潜在条件,补充方程进行求解【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单先画出草图如图所示,标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.FL(Mm
4、)gs1=(Mm)v02对末节车厢,根据动能定理有mgs2mv02而s=s1s2 由于原来列车匀速运动,所以F=Mg以上方程联立解得s=ML/(Mm)说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组(二)应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制(2)般来说,用牛顿
5、第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解可以说,熟练地应用动能定理求解问题,是种高层次的思维和方法,应该增强用动能定理解题的主动意识(3)用动能定理可求变力所做的功在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscos求出变力做功的值,但可由动能定理求解【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是: A. B.
6、C. D. 零解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有F=mv12/R当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有F/4=mv22/2R在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=mv22mv12=FR所以,绳的拉力所做的功的大小为FR/4,A选项正确说明:用动能定理求变力功是非常有效且普遍适用的方法【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L时,它的上升高度为h,求(1)飞机受到的升力大小?
7、(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能?解析:(1)飞机水平速度不变,L= v0t,竖直方向的加速度恒定,h=at2,消去t即得由牛顿第二定律得:F=mgma=(2)升力做功W=Fh=在h处,vt=at=, (三)应用动能定理要注意的问题【例7】质量为m的小球被系在轻绳端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用设某时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) A、mgR/4 B、mgR/3 C、mgR/2 D、mgR解析:小球在圆周运动
8、最低点时,设速度为v1,则7mgmg=mv12/R 设小球恰能过最高点的速度为v2,则mg=mv22/R设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得:mg2RW=mv22mv12由以上三式解得W=mgR/2. 答案:C 说明:该题中空气阻力般是变化的,又不知其大小关系,故只能根据动能定理求功,而应用动能定理时初、末两个状态的动能又要根据圆周运动求得不能直接套用,这往往是该类题目的特点机械能守恒定律(一)单个物体在变速运动中的机械能守恒问题【例1】如图所示,桌面与地面距离为H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)( )A、mgh
9、;B、mgH;C、mg(Hh);D、mg(Hh)解析:这过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh ,末为 E末=mv2mgH,而mv2=mg(Hh)由此两式可得:E末=mgh答案:A【例2】如图所示,个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中圆轨道在竖直平面内,半径为R,B为最低点,D为最高点个质量为m的小球以初速度v0沿AB运动,刚好能通过最高点D,则( ) A、小球质量越大,所需初速度v0越大 B、圆轨道半径越大,所需初速度v0越大 C、初速度v0与小球质量m、轨道半径R无关D、小球质量m和轨道半径R同时增大
10、,有可能不用增大初速度v0解析:球通过最高点的最小速度为v,有mg=mv2/R,v=这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足m v02=mg2Rmv2,v0= 答案:B(二)系统机械能守恒问题【例3】如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,个小球从A点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度vD为mghmg2R=mvD2;所以A到D的水平距离为由机械能守恒得A点的速度v0为mgh=mv02;由于平抛运动的水平速度不变,则vD=v0co
11、s,所以,仰角为【例4】如图所示,总长为L的光滑匀质的铁链,跨过光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某端下落,则铁链刚脱离滑轮的瞬间,其速度多大?解析:铁链的端上升,端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,这个题目我们用机械能守恒定律的总量不变表达式E2=El,和增量表达式EP=EK分别给出解答,以利于同学分析比较掌握其各自的特点(1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0滑离滑轮时为终态,
12、重心离参考面距离L/4,EP=PLgL/4Ek2=Lv2即终态E2=PLgL/4PLv2由机械能守恒定律得E2= E1有PLgL/4PLv2=0,所以v=(2)利用EP=EK,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少EP= PLgL/4,动能增量EK=PLv2,所以v= 【模拟试题】1、某地强风的风速约为v=20m/s,设空气密度=1.3kg/m3,如果把通过横截面积=20m2风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P=_,大小约为_W(取位有效数字)2、如图所示,在光滑的水平面上放质量为M964kg的木箱,用细绳跨过定滑轮O与质量为m=10kg的重物相连
13、,已知木箱到定滑轮的绳长AO8m,OA绳与水平方向成30角,重物距地面高度h=3m,开始时让它们处于静止状态不计绳的质量及切摩擦,g取10 ms2,将重物无初速度释放,当它落地的瞬间木箱的速度多大?3、根细绳不可伸长,通过定滑轮,两端系有质量为M和m的小球,且M=2m,开始时用手握住M,使M与m离地高度均为h并处于静止状态求:(1)当M由静止释放下落h高时的速度(2)设M落地即静止运动,求m离地的最大高度。(h远小于半绳长,绳与滑轮质量及各种摩擦均不计)【试题答案】1、 2、解析:本题中重物m和木箱M的动能均来源于重物的重力势能,只是m和M的速率不等根据题意,m,M和地球组成的系统机械能守恒,选取水平面为零势能面,有mghmvMv从题中可知,O距M之间的距离为 h/OAsin304 m当m落地瞬间,OA绳与水平方向夹角为,则cos=4/5而m的速度vm等于vM沿绳的分速度,如图所示,则有 vmvMcos 所以,联立解得vM=m/s答案:m/ s 3、解:(1)在M落地之前,系统机械能守恒(Mm)gh=(M+m)v2,(2)M落地之后,m做竖直上抛运动,机械能守恒有: mv2=mgh/;h/=h/3离地的最大高度为:H=2h+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- da印刷合同样本
- 买断树苗合同样本
- 产业发展合同样本
- 业务策划费合同标准文本
- 全款房子合同样本
- 保鲜冷库租赁合同标准文本
- 代理外贸合同样本
- 与用工单位合同样本
- 代替承租合同样本
- led显示屏购买合同样本
- 《养老护理员》-课件:协助卧床老年人使用便器排便
- 统编版语文八年级下册全册大单元整体教学设计表格式教案
- 特种加工技术课件
- 提升教师数字素养培训方案
- 康恩贝流程优化与ERP实施项目方案建议书20150612V1.0
- 关键工序特殊过程培训课件精
- 坑机安全操作规程范本
- 饲料厂奖惩制度汇编
- HFSS射频仿真设计实例大全
- 《互联网营销课件:市场拓展的七大技巧》
- 应用数学智慧树知到课后章节答案2023年下杨凌职业技术学院
评论
0/150
提交评论