对数学广角的教学思考 (2)_第1页
对数学广角的教学思考 (2)_第2页
对数学广角的教学思考 (2)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对数学广角的教学思考 一、 要准确定位教学目标和要求。“数学广角”的教学目标的定位上与我们的数学常规课和数学实践活动有所不同,它更重视通过观察、操作、实验、猜测、推理与交流等活动,感受数学思想方法的奇妙与作用,学会运用数学思想方法解决问题的策略、方法。 因为数学广角是面向全体学生渗透数学思想方法的,意图是让每一个学生受到数学思维训练的同时,逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学美的意识。因此,要防止把数学广角当做奥数培训课进行“英才”教育,它需要更多地、有计划地创设实践活动,让全体学生去观察、研究、尝试,重在活动中对思想方法的感悟。 如四上编排的运筹思想和对策论都是比较系统、抽象的数

2、学思想方法,教材只是让学生通过简单的事例,初步体会运筹思想和对策方法在解决实际问题中的应用,初步培养学生的应用意识,提高解决实际问题的能力。学生只要能从解决问题的多种方案中寻找出最优的方案,初步体会优化思想的应用就可以了,并不要求学生一看到问题就能从优化的角度给出最优的方案。 显然,立足于思想方法的目标定位,必然要求教师要充分地挖掘和理解教材中所体现的数学思想方法,在教学时注重让学生通过观察、比较、分析,感悟数学思想方法的魅力。 正所谓“授人以鱼,不如授之以渔,授人以鱼以救一时之急,授人以渔则可解一生之需”。 立足数学思想方法的渗透,应该明确三点:数学思想是我们进行数学广角教学的指导思想;不能

3、只满足于数学问题的解决,还要有数学思想的飞跃和创造;数学思想不可能像数学知识那样一步到位,它需要有一个不断渗透、循序渐进、由浅入深的过程。二、活动体验,经历抽象,感悟思想。 离开学生的数学活动过程,数学思想方法的渗透也就无从谈起。在教学中,学生的参与非常重要,没有参与,学生就不可能对数学知识、数学思想产生体验;没有了体验,数学思想只能是一句空话。所以在教学过程中,我们应该创设学生感兴趣的各种情境,让他们以一种积极的状态,主动参与到数学教学过程中来,让学生根据自己的体验,逐步领悟数学思想方法。 如四年级上册“数学广角”中安排的“烙饼问题”,目的是让学生理解优化思想,形成从多种方案中寻找最优方案的

4、意识,提高学生解决问题的能力。运筹思想是比较系统、抽象的数学思想方法,如何让学生通过简单的事例,体会运筹思想在解决实际问题中的应用,强化学生的运筹意识,我觉得离不开学生的数学活动和数学思考。 首先,通过数学活动让学生感悟运筹思想。 在理解问题情境的基础上,教师让学生猜测烙3张饼所需要的时间,通过猜测激发学生积极主动参与问题解决的过程。在学生对问题作出自己的大胆预测之后,教师不失时机地向学生提供充分从事数学活动的机会,让他们在自由探索和合作交流的过程中,发现怎样烙才可以花最少的时间让每个人都吃上饼的策略,从而获得对运筹这一数学思想方法的感悟。 寻求优化是人类的一种本能,通过数学活动,我们把抽象的

5、运筹思想变为学生看得见、摸得着、能理解的数学事实:怎样合理地烙才能最快让大家吃上饼。在学生有意识的数学活动中,促使他们对材料进行整理,找出有规律的现象,进行对比分析。在这一活动过程中学生初步体验和感悟运筹思想。理解运用运筹思想可以帮助我们合理地安排事情,节省时间,提高效率。其次,利用数学运算比较理解运筹思想。 通过数学活动使学生感悟到运筹思想在烙饼问题中的应用可以减少时间,提高效率。在此基础上我们可以利用数学运算,在强调数学算法活动(数学思考)的同时让学生理解运筹思想给我们带来的效益。 师:如果要烙4张饼,怎样才能最快吃上饼?(2张2张地烙) 师;烙5张饼呢?(先2张2张地烙两次,再把剩下的一

6、张烙好) 生:不对,烙5张饼,可以先烙2张,再用最优方法烙3张。 在前面动手操作的基础上,这里教师抛开了形式上的操作,让学生利用大脑的思维去“操作”烙4张饼和5张饼的最快方法,这实际上是一种数学算法的运用。 师:如果要烙6、7、8张,有没有信心很快找出烙饼的方法来?同桌根据前面烙饼的经验商量一下,并填好表格。 生:6张饼,2张2张地烙或3张3张地烙。 生:7张饼,3+2+2。 生:8张饼,3+3+2或2+2+2+2。 师小结:看来烙4张以上饼的最佳方法,可以2张2张地烙或3张3张地烙或2张和3张饼结合着来烙。 在这里虽然这些方法都可以得到烙饼的最短时间,但烙2张的方法与烙3张的方法是有区别的,

7、在操作程序上很显然烙2张较烙3张要方便一些,而且省心很多,不需要考虑取进取出,不需要考虑不同号码饼的正反面。这也是运筹,是算法中的运筹,是面对很多张饼时我们所应采取的运筹策略: 如果要烙的饼的张数是双数,2张2张地烙就可以了,如果要烙的饼的张数是单数,可以先2张2张地烙,最后3张饼按上面的最优方法烙,最节省时间。 这样通过探索奇数张饼和偶数张饼的烙饼策略,实际上把所有的问题都化归和统一成一个数学模型,我们就可以在整体上、从数学思想方法上进行把握。 三、思想方法的形成是需要过程的 一种思想的形成要比一个知识点的获得困难得多。从学生的数学思想形成过程来看,我们不难发现学生的数学思想不可能像数学知识那样一步到位,它需要有一个不断渗透、循序渐进、由浅入深的过程,逐步积累而形成。 这个过程是从个别到一般,从具体到抽象,从感性到理性,从低级到高级螺旋上升的过程。教师要做“过程”的加强者,不断用我们的数学思想“敲打”学生的思维,让学生在一次次的“敲打”过程中,不断积累、不断感悟、不断明朗,直到最后的主动应用。 “数学思想方法是自然而平和的,我们不能把活生生的数学思考变成一堆符号让学生去死记,以至让美丽的数学淹没在形式化的海洋里。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论