第五章 差分析法_第1页
第五章 差分析法_第2页
第五章 差分析法_第3页
第五章 差分析法_第4页
第五章 差分析法_第5页
已阅读5页,还剩142页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、例题例题第一节第一节 差分公式的推导差分公式的推导第二节第二节 应力函数的差分解应力函数的差分解第三节第三节 应力函数差分解的实例应力函数差分解的实例第四节第四节 弹性体的形变势能和外力势能弹性体的形变势能和外力势能第五节第五节 位移变分方程位移变分方程第六节第六节 位移变分法位移变分法习题的提示和答案习题的提示和答案教学参考资料教学参考资料第七节第七节 位移变分法例题位移变分法例题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 弹性力学的基本解法是,根据静力平衡条件、形变与位移之间的几何条件和形变与应力之间的物理条件,建立微分方程和边界条件。近似解法 因此,因此,弹性力学

2、问题属于微分方程的弹性力学问题属于微分方程的边界问题。边界问题。通过求解,得出函数表示的精通过求解,得出函数表示的精确解答。确解答。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 对于工程实际问题,由于荷载和边界对于工程实际问题,由于荷载和边界较复杂,难以求出函数式的解答。为此,较复杂,难以求出函数式的解答。为此,人们探讨人们探讨弹性力学的各种近似解法,弹性力学的各种近似解法,主要主要有有变分法、差分法和有限单元法。变分法、差分法和有限单元法。近似解法第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)(xf21, fffxo 21 ff3f 1x2x3x)

3、(xf差分法第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题;d ,d1212ffffxxxx;dd1212xxffxfxf差分法将将微分方程微分方程用差分方程(代数方程)代替,用差分方程(代数方程)代替,于是,求解微分方程的问题化为求解差分于是,求解微分方程的问题化为求解差分方程的问题。方程的问题。将将导数导数用有限差商来代替,用有限差商来代替,将将微分微分用有限差分来代替,用有限差分来代替,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题导数差分公式 在平面弹性体上划分等间距h 的两组网格,分别x 、y 轴。网格交点称为结点,h称为步长。第五章第五章 用

4、差分法和变分法解平面问题用差分法和变分法解平面问题应用应用泰勒级数公式泰勒级数公式 将将 在在 点展开点展开,)(xfox).()()(! 21)()()()(32oo22oooxoxxxfxxxfxfxf(a)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题抛物线差分公式抛物线差分公式略去式(a)中 以上项,分别用于结点1、3,;)(2)(o222oo1xfhxfhff3x,0301hxxhxx。022200)(2)(3xfhxfhff抛物线差分公式结点3,结点1,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)()2(1)(),(21)(0312022

5、310bfffhxfffhxf。抛物线差分公式式(b)又称为中心差分公式中心差分公式,并由此可导出高阶导数公式。从上两式解出o点的导数公式,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)(3xo 抛物线差分公式第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题线性差分公式线性差分公式在式(a)中仅取一、二项时,误差量级为 。)(2xo,)(001xfhff)( , )(1)(300cffhxf线性差分公式式(c)称为向前差分公式。向前差分公式。对结点1,得:第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,)(003xfhff)(),(1

6、)(300dffhxf第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,02 T,)(bsqnT,bsTT 例11S2S第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 稳定温度场的基本方程(a)是拉普拉斯方程;在上的第一类边界条件是已知边界上的温度值;在 上的第二类边界条件是已知热流密度值,其中是导热系数。1S2S第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题0)(02 T; 0)(443210TTTTT1T2)(yq,)()(22yqyT(d)第五章第五章 用差分法和变

7、分法解平面问题用差分法和变分法解平面问题,2)(0102hTTyT.)(22010yqhTT2T10T(e)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题ab40353025322224222017第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题。0)222030(4,0)223532(4abbaTTTT13.25,53.28baTT(度).第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题yxf23思考题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 对于单连体,按应力函数单连体,按应力函数 求解时,求解时, 应满足:

8、)( )( .)(,)( )2()( )( ; 0 ) 1 (4bSSflmfmlaAysxyyxsyxx按 求解第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)( . , ,22222cyxxyxyyx按 求解第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)()(41)()(),2(1)()(),2(1)()(867503104220202022020220dhyxhxhyxyyx。差分法求解1.1.应力公式应力公式( (c) )的差分表示。的差分表示。对于o点, 差分法求解:差分法求解:第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问

9、题0)(04 )(2)( 820876543210. 0)(1211109i相容方程(e)化为: 对每一内结点, 为未知,均应列出式(e)的方程 。2.2.相容方程相容方程(a)的差分的差分表示,表示,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题x相容方程y第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题xy边界条件第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 应力边界条件用 表示 取出坐标 的正方向作为边界线s 的正向(图中为顺时针向),当移动 时, 为正,而 为负,外法线的方向余弦为dsdxdy.sin,cosdsdxmdsdy

10、l边界条件第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,)(dd)(dd222xfyxsxysy.)(dd)(dd222yfyxsyxsx,)(ddxfys( f ).)(ddyfxs边界条件即将上式和式(d)代入式(b),得第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)(.)()(,)()(gdsfxxdsfyyBAABBAAByx边界条件式( f )、(g)分别是应力边界条件的微分、积应力边界条件的微分、积分形式。分形式。再将式(f )对s 积分,从固定的基点A到边界任一点B,得第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题

11、通过分部积分从A到B积分,得yyxxddd.B,d)d(duvuvvuAAyyyxxxABABAB)()(.d)(d)(BAyBAxsfxxsfyyBB边界条件(h)由全微分 求边界点求边界点的的 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题Ax, 0)( ,)( ,AAyxA)(.)(d)(,d)(,d)(idsfxxsfyysfxsfyBAyBAxBAyBBAxBBBB边界条件AyAAx)(Ay)(第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题边界条件,BBx)(.)(By和第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题边界条件

12、BBx)(By)(第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题0)()(AAyxAxyxy求解步骤(2)由边界结点的 、 值,求出边界 外一行虚结点的 值;(1)在边界上选定基点A, 令 , 然后计算边界上各结点的 、 、 ;4.4.应力函数差分解的步骤应力函数差分解的步骤第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题(3)对边界内所有结点列式(e)的方程, 联立求各结点的 值;求解步骤(5)按式(d)求各结点的应力。(4)求出边界外一行虚结点的 值;第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题第五章第五章 用差分法和变分法解平面

13、问题用差分法和变分法解平面问题q问题 此题无函数式解答。应用差分法求解。 正方形深梁正方形深梁, ,上边受均布荷载 ,下边两角点处有支承反力维持平衡,试求其应力。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题1.本题具有对称性对称性,取y轴如图,并取以反映对称性。, 0)()(AAyxA取网格如图。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 AB间y向面力主矢量号, AB间x向面力主矢量, AB间面力对B点力矩,BAxBBAyBsfysfxd)(d)(BAxsfyyBBd)(BAysf

14、xxBd)(注意符号为正.第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题0)(04 i5. 求出应力求出应力,如AM线上各点应力,并绘 出分布图。4. 求出边界外一行虚结点的 值值。3. 对每一内点列差分方程 ,求求 出出 。2. 由边界点 的导数值,求出边界外一行 虚结点的虚结点的 值值。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题;75. 0 ,75. 0qminqmaxxx.24. 0 ,84. 1qminqmaxxx比较xx第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 差分法优点差分法优点:差分法评价第五章第五章 用差分法

15、和变分法解平面问题用差分法和变分法解平面问题)(3xo )( xo 缺点缺点:差分法评价第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题0)(02 Ta(Z向厚度 )1AyB2FFFxaaa2.用差分法计算 图中A点的应 力分量。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题弹性力学变分法弹性力学变分法,又称为能量法能量法。因其中的泛函就是弹性体的能量。泛函泛函是以函数为自变量(宗量)的一种 函数。变分法,变分法,是研究泛函及其极值的求解方法是研究泛函及其极值的求解方法。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题应力变分法应力变分法

16、取应力函数为自变量,并以 余能极小值条件导出变分方程。 本章只介绍位移变分法。位移变分法位移变分法取位移函数为自变量,并以势 能极小值条件导出变分方程。 弹性力学变分法,是区别于微分方程边值问题的另一种独立解法。其中分为:第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题外力势能外力势能外力做了功,必然消耗了相同 值的势能。当取 时的外力功和能为零,则:)( . d)(dd)(asvfufyxvfufWsyxAyx0 vuWV.d)(dd)(syxAyxsvfufyxvfuf(b)外力功和外力势能1.1.弹性体上的外力功和外力势能弹性体上的外力功和外力势能外力功:外力功:第五章

17、第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题形变势能(2)应力和应变均从0增长到 , 故单位体积上,应力所做的功是单位体积上,应力所做的功是 非线性 关系 线 性 关系、,d01U.211U (1)作用于微小单元上的应力,是邻近 部分物体对它的作用力,可看成是 作用于微小单元上的“外力”。2.2.应力的功和形变势能(内力势能)应力的功和形变势能(内力势能)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 线性的应力-应变关系非线性的应力-应变关系第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)0(zyzxz),0(zyzxz).(211xy

18、xyyyxxU(c) 形变势能第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题1U形变势能第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题.dd)(21dd1AxyxyyyxxAyxyxUU(d)形变势能第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题).(212()1 (222221eEUxyyxyx21EE11U1U形变势能).()(212)()(122221fyuxvyvxuyvxuEU 对于平面应变问题, 将 , 。再将几何方程代入, 可用位移位移表示为(6)将物理方程代入,平面应力问题的形平面应力问题的形 变势能密度变势能密度 ,

19、可用形变形变表示为第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题. 0U. , ,111xyxyyyxxUUUUUU1U(g)形变势能的性质第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题.pVUE(h)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题211U思考题思考题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题u vpE第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 用位移表示的平衡微分方程(在A中) 用位移表示的应力边界条件(在 上) 位移边界条件(在上) 。uss实际位移u v(a) 其中

20、、属于静力平衡条件,属于约束条件。对于实际位移,可将看成是必要条件,而、是充分条件。1.1.实际平衡状态的位移实际平衡状态的位移 、 ,必须满足,必须满足第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题, v, 0 vu虚位移(b)us(在 上)。usu第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,*vvvuuu(c)虚位移第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题.dddyyuxxuu(d) 变分与微分的比较变分与微分的比较变分与微分第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题UVpE. vvUuuUU变分

21、与微分(e)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题由于微分和变分都是微量,所以 a.它们的运算方式相同运算方式相同,如式(d),(e); b.变分和微分可以交换次序变分和微分可以交换次序,如 ).()(uxxu变分与微分( f )第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题当发生虚位移虚位移(位移变分) 时,)( . d)(dd)(gsvfufyxvfufWyxsAyx)( .hWV)( . , ,iuyvxvyuxxyyxvu,虚位移上功和能 由于虚位移引起虚应变虚应变,外力势能的变分外力势能的变分:外力的虚功外力的虚功(外力功的变分):3.

22、3.在虚位移上弹性体的功和能在虚位移上弹性体的功和能 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题.dd)(AxyxyyyxxyxU21虚位移上功和能 ( j )第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题(1)在封闭系统中,假设没有非机械能的改变,也没有动能的改变,则按照能量守恒定律,在虚位移过程中形变势能的增加在虚位移过程中形变势能的增加 应等于外力势能的减少应等于外力势能的减少(即等于外力所做的虚功 )。)( UW)( . kWU位移变分方程4.4.弹性力学中位移变分方程的导出弹性力学中位移变分方程的导出第五章第五章 用差分法和变分法解平面问题

23、用差分法和变分法解平面问题(2)位移变分方程位移变分方程 将式(g)的 代入上式,得它表示,在实际平衡状态发生位移的变在实际平衡状态发生位移的变 分分 时,所引起的形变势能的变时,所引起的形变势能的变 分分 ,等于外力功的变分,等于外力功的变分 。)( . d)(dd)(lsvfufyxvfufUyxsAyxW),(vu)( U)( W位移变分方程第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题U)( . d)(dd)(dd)(msvfufyxvfufyxyxsAyxAxyxyyyxx位移变分方程它表示,在实际平衡状态发生虚位移时,在实际平衡状态发生虚位移时,外力在虚位移上所

24、做的虚功等于应力在外力在虚位移上所做的虚功等于应力在 虚应变上所做的虚功。虚应变上所做的虚功。(3)虚功方程虚功方程 将式(j)的 代入上 式,得第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题其中 形变势能的变分,如式( j )所示, 外力功的变分,如式(g)所示。)( , 0nWU)( , 0oWUWU位移变分方程(4)最小势能原理最小势能原理式(k)可写成其中U弹性体的形变势能,如5-4式(d),W弹性体的外力功, 如5-4式(a)。可以证明,式(n)可以写成为第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题位移变分方程 .d)(dd)( d)(dd)

25、(;dd)( dd dd1111WsvfufyxvfufsvfufyxvfufWUyxyxUUUyxUUysxyAxAysxyxxyxyyyxAxAxyxyyyxxA第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题由于弹性体的总势能为故式(o)可以表示为 再将总势能 对其变量(位移或应变)作二次变分运算,可得 综合式(p),(q),即得,pWUVUE. 0pE. 0p2E.pminE (p)(q)(r)位移变分方程pE第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题位移变分方程 这就是最小势能原理。它表示在给这就是最小势能原理。它表示在给定的外力作用下,在满

26、足位移边界条件定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一的所有各组位移状态中,实际存在的一组位移对应于总势能为极小值。组位移对应于总势能为极小值。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题pEuuuminE p0pE0p2Eu(实际位移)pE(a)(b)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题.dd)( dd)(yxuyvxvyuxyxUAxyyxAxyxyyyxx又一形式U第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题应用分部积分公式 和格林公式 (其中s为平面域A的边界,l,m为边界外法线的方向

27、余弦),可将 进行转换。, d)d(dAAuvuvvu,d)(dd)(sAsmQlPyxyQxPU又一形式第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题在 上,虚位移 , 对 其余几项进行同样的转换,并代入式( ) ,可得又一形式的位移变分方程又一形式的位移变分方程:yxuxuxyxuxAxxAxdd )()(dd )(,dd)(dyxuxsulsAxxus0u)(.ddtsulsulsxsx又一形式U例如,对第一项计算,(s)l第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题Ayxyyxyxxyxvfxyufyxdd )()()(. 0d)()(usvf

28、lmufmlsyxyyxyxx因 , 都是任意的独立的变分,为了满足上式, 必须uv. 0 , 0, 0 , 0yxyyxyxxyxyyxyxxflmfmlfxyfyx(在A中)(v)(在 上)(w)s又一形式第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 由此可见,从位移变分方程可以由此可见,从位移变分方程可以导出平衡微分方程和应力边界条件,导出平衡微分方程和应力边界条件,或者说,位移变分方程等价于平衡微或者说,位移变分方程等价于平衡微分方程和应力边界条件。分方程和应力边界条件。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 实际平衡状态的位移必须满足

29、 a. 上的约束(位移)边界条件; b. 上的应力边界条件; c.域A中的平衡微分方程。5.5.结论结论sus结论 位移变分方程可以等价地代替静力条 件b,c。 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题结论 由此得出一种变分解法变分解法,即预先使位,即预先使位 移函数满足移函数满足 上的位移边界条件,再上的位移边界条件,再 满足位移变分方程,必然也可以找出满足位移变分方程,必然也可以找出 对应于实际平衡状态的位解答。对应于实际平衡状态的位解答。us第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题0p2E 1.微分和变分各是由什么原因引起的? 2.试导

30、出式(u)。 3.试比较4.中变分方程 (1)-(5)的不同的 物理解释。 4.试证明二阶变分 。 思考题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 位移变分法是取位移为基本未知函数位移变分法是取位移为基本未知函数的。的。 位移函数应预先满足位移函数应预先满足 上的位移边界上的位移边界条件,然后再满足位移变分方程。条件,然后再满足位移变分方程。us第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题mmmmmmyxvByxvvyxuAyxuu).,(),(),(),(00(a)瑞利-里茨法 (1)因位移函数是未知的,在变分法中采用设定位移试函数的方法设定位

31、移试函数的方法,令 1.1.瑞利瑞利- -里茨法里茨法 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题其中 和 均为设定的x,y的函数,并在边界 上,令 mmvuvu, ,00. 0)( , 0)(,)( ,)(00smsmssvuvvuu(在 上)(在 上)(c)(b)瑞利-里茨法ususus第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题mAmB.,mmmmmmBvvAuu瑞利-里茨法(d)us第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)( . d)(dd)(esvfufyxvfufUyxsAyx)( . )(fBBUAAUUm

32、mmmm瑞利-里茨法mAmB 位移的变分通过 , 的变分来反映,故形变势能的变分为(2)位移(a)还必须满足位移变分方程第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题将式(d),( f )代入(e)得.0ddddddAsmmmAsmmmBsvfyxvfBUAsufyxufAUmymymxmx因虚位移(位移变分)中的 , 是完全任意的、独立的,为了满足上式,必须:mAmB第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)( )2 , 1(.ddd,dddgmsvfyxvfBUsufyxufAUAsymymAsxxmmmm瑞利-里茨法mAmBmAmB式(g)是

33、瑞利瑞利- -里茨变分方程里茨变分方程。它是关于 ,的线性代数方程组,由上式可解出 , ,从而得到位移的解答。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题sus伽辽金法第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 将位移的变分 , (式(d ))代入,同样由于 , 为完全任意的和独立的变分,得到)( . 0dd)()(hyxvfxyufyxAyxyyxyxxu伽辽金法smAmB(2)于是,由5-5中式(u)可见,由于 上的应力边界条件已满足,设定的位移只需满足下列变分方程v第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题)( )2

34、, 1(. 0dd)(, 0dd)(imyxvfxyyxufyxmyxyAymxyxAx将上式括号内的应力用位移来表示,得伽辽伽辽金变分方程金变分方程: :伽辽金法)( . 0dd)2121(1, 0dd)2121(1222222222222jyxvfyxuxvyvEyxufyxvyuxuEmymxAA)2 , 1(m第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题伽辽金法mAmBmAmB第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题思考题第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题1q2q第五章第五章 用差分法和变分法解平面问题用差

35、分法和变分法解平面问题.,111111yBvBvxAuAu. 0)( , 0)(00yxvu例题例题 (a)(b)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题其余的应力边界条件及平衡微分方程由下列变分方程变分方程代替(其中 ):0yxffssxsvfBUsufAUy.d,d1111(c)对式(c)右边的积分,应包含所有的应力边界条件(当 或 处积分为0),0 yxff例题例题 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题且其中的 , 应代入相应的边界方程。将式(a)代入 U ,计算式(c)的左边项。 共建立两个方程,求出 和 ,得位位移解答:移解答:

36、1v1u11 BA例题例题 .)(1,)(11221yqqEvxqqEu(d) 对于图示的简单问题,式(d)正好是其精确解。第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题).1()( ,0)(,0),( ,0),(2202/bxvuvuvubybyyx例题例题 (e)例例2 2本题全部为位移边界条件:全部为位移边界条件:第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题本题以y轴为对称轴,u应为x的奇函数,v应为x的偶函数。例题例题 (f)设定位移势函数设定位移势函数为)().1 ()1 ()1 (),1 ()1 (2222221110111gbybyaxB

37、byaxvBvvbyabxyaxAuAu第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 位移(g)已满足对称性条件已满足对称性条件(f)(f)和全部边和全部边界条件界条件(e)(e)。 因 全部为位移边界条件且均已满足,从55 式(u)可见,也可应用伽辽金变分法。, 0,usss例题例题 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 将位移(g)代入上式,求出 得出的位移解答与书中用瑞利-里茨法 给出的结果相同。 因 ,故伽辽金变分方程伽辽金变分方程为 . 0dd)2121(2, 0dd)2121(21122200222220022yxvyxuxvyv

38、yxuyxvyuxuabab0yxff,11BA例题例题 (h)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题例题1例题2例题3例题4例题5例题7例题6第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题例题例题1 1设图中的矩形域为 ,取网格间距为h=2m,布置网格如图,各边界点的已知温度值(度)如图所示,试求内结点a,b的稳定温度值。mm 46 ab40353025322224222017第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题解:对a,b列出方程如下:. 02220304, 02235324abbaTTTT解出.(13.25 ,

39、53.28度)baTT第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题FaBxy3aaaA.71(Z向厚度 )1F65第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题. 0)()(AAyxA. 0432B.)( , 0)(3FyxB0)(Ay.1516172Fa,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题.0)()(;611)( ,6)(ByAyBxAxaFaF)22(2)28(204231BA0.)(7652Fa1211第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题ll14lh1098HGEDIJBAChhhh3

40、23414323111276xy1h=l/4FF第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题0)()(AAyxA第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 计算各边界结点处的 、 、 值。 在A点及J点,各取 布置于两侧,以 反映荷载的对称性,按公式(其中 即AB之间面力对B点的力矩,图中以顺时针方向为正)。2F,d)(d)(,d)( ,d)(BAyBAxBBAyBBAxBsfxxsfyysfxsfyBBxyB第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题yxF/2F/2F/2-Fh/2-Fh/2-Fh第五章第五章 用差分法和变

41、分法解平面问题用差分法和变分法解平面问题 计算边界外一行结点的 值。, 0)(,JIBAy,)()(2,3,3,212,11,7,6,2)(,FxGED.)()(3,4,310,9,8Fh第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题. 0282012,11,10, 98 ,7, 6, 54, 3 , 2, 10,4416228,2168162043214321FhFh对结点1,对结点2,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题对结点3,对结点4,.2221648,78248243214213FhFh.5206. 0 ,5056. 0,1873.

42、0 ,2640. 03321FhFhFhFh解出第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题),2(1)(),2(1)(03,104,22020hhyx4lh .0528. 2)( ,8912. 0)(,1648. 0)(;6136. 0)( ,4424. 0)(,4984. 1)(1412lFlFlFlFlFlFyyEyxxJx第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题例题例题 xxyy第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题对于平面应变情况,只需将上式中 , 变换为AyxyxEU3(12222,12EE).(b1E.)

43、212dxdyxy解:平面应力情况下,单位厚度的形变 势能是:例题例题 (a)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题11)1()1(22222EE,211)1(22E.12112AyxEU)(21)1 (12222.21)211(22dxdyxyyx例题例题 E(c)第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题2xy21U例题例题 U第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题例题例题 lCDEFAB第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题00U例题例题 第五章第五章 用差分法和变分法解平面问题用

44、差分法和变分法解平面问题例题例题 (a) AB切开后,仍然处于闭合状态,不发生 张开。这是不稳定的平衡状态;第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题) 1(2 . 0ba 例题例题 qyxbuvbaaoq第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题解:在图示荷载作用下,深梁的位移应对称于x轴,而反对称于y轴。 因此,位移分量u应为 、 的奇函数,而v为 x 、y 的偶函数,x y如图所示。可以设定位移势函数如下:,)1 (2322122yAxAAabxyaxu.)1 (2322122yBxBBaxv第五章第五章 用差分法和变分法解平面问题用差分法

45、和变分法解平面问题, ax, 0),(vu例题例题 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,)1 (22111abxyaxAuAu).1 (22111axBvBv)961 ()1 ( 24422222211axaxbayAEU)1 (4421223114221axbaxBAaxB).21 (442222221axaxbaxA例题例题 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 abdxdyUU001421212342115412BabAabEbaBA0yxffbyqfy0 xf, 01AU.11sydsvfBU例题例

46、题 再积分求U,第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题 边界是 ,且 ,从 到 积分。再将U代入上式,得到两个求 的方程:bydxds aa11,BAs, 01581571621158121112BAbaAabE.38158382112112qaABabE第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题2 . 0ba , 0353911BA.565111EqaBAEqaA3125. 11.4625. 11EqaB,)1 (3125. 1222axyaxEqau).1 (4625. 122axEqav例题例题 第五章第五章 用差分法和变分法解平面问题

47、用差分法和变分法解平面问题例题例题7 7 图中所示的薄板,厚度 ,三边固定,一边受到均布压力q的作用。试用瑞利-里茨的位移变分法求解,其中取 , 。10ba 例题例题 第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题aa b xyq第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题解:在瑞利-里茨法中, 设定位移试函数应满 足位移边界条件,并 应反映图示问题的对称性。取,)(232122xAyAAxyaxu.)(232122xByBByaxv第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,)(22111xyaxAuAu.)(22111yaxBvBv0yxffby 例题例题 11,BA第五章第五章 用差分法和变分法解平面问题用差分法和变分法解平面问题,01AU .11ABbyydxvfBU.)(21)()(22221xvyuyvxuEU例题例题 (a)(b)0ba . 221692224422122442211xaaxxAxaaxyAEU.222211yaxxBA222122442122yxBxaaxB第五章第五章 用差分法和变分法解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论