基于单幅图像的快速去雾算法_第1页
基于单幅图像的快速去雾算法_第2页
基于单幅图像的快速去雾算法_第3页
基于单幅图像的快速去雾算法_第4页
基于单幅图像的快速去雾算法_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 仁 , , , 傮傦 亶 , 僔. . , , 仇 , , , , . , . 儈, . . , Narasimhan 1 , ; 2, Shwartz ; 3 ; 4 . , , . , Tan5 , 亩 973亩(亩 : 2010CB731800, 2009CB320602 、 (亩 : 61210012, 61021063, 61290324 . . Fattal 6 , . He7 傼 , , . , He . , , 5 600h400 5 7 (double processors of Pentium 4 and 1 GB memory, 6 512h512 35。(C+, a

2、 1.6 GHz Intel Pentium dual core processor, 7 600h400 10 20。(a 3.0 GHz Intel Pentium 4 Processor. Tarel8 , , , . 儈. 7 8 . 9 , , . , , . 10 , 7 僔. 11 , 仌 , . , , , 100084E-mail: zdh: , . . , . , . 傼 , , .: , , , Fast Haze Removal from a Single ImageQian Liu, Maoyin Chen, Donghua ZhouDepartment of Aut

3、omation, Tsinghua University, Beijing 100084, P. R. ChinaE-mail: zdhAbstract: Images of outdoor scenes show poor visibility in presence of haze. This results in poor performance of many outdoor images progressing systems. In this paper, we present a fast haze removal method using a single color or g

4、ray level image. Based on the analyses of physical-based model, we estimate airlight and atmospheric light utilizing the simple average filter. Our method is very simple and efficient and achieves real-time computation. Experiments demonstrate that our results achieve as good visibility as a few sta

5、te-of-art algorithms.Key Words: Haze removal, Real-time, Physical-based model, Visibility3780978-1-4673-5534-6/13/$31.00c 2013IEEE , 儈. , . 8 , 8 儈, , 8 , 8 . , . , , , . , .2 2.1 亶 , . , 1rd x rd x H x F x e A e (1, x ; H (Haze image; F (Haze-free image; r ; d ; A (Atmospheric light, , (x .(1, (rd

6、x F x e (Direct attenuation, ; (1rd x A e (Airlight (Atmospheric veil, . (1, (L x (1rd x A e,1rd x L x A e(2(1 1L x H x F x L x A (3, (H x (L x A , (F x . 2.2 (Medium transmission (t x 亩(rd x e , rd x t x e (4(1 (1H x F x t x A t x (5 (5,1A t x H x d (6 (6 仌 , ,min c c r g b M x H x (7 To o o A A A

7、A (8 (6 (1(oA t x M x d ,1o M x t x A t(9 (4, (t x d . (t x (x . (t x 0 , 0, (H x A , (t x 1 , , (H x F x . (t x , , . (t x .(9 11a a s s o o average M x M x average A A 21y x o a M y A s : (10, a s , (x : (x a a s s u . (t x , (t x , , a ave s M x average M x (11 1ave ave o oM x M x tx A A M (12 亩

8、, 01M d d .1G M , 1ave oM xtx A G (13 G , G , , , ; G , , . , av m G U (14 201325th Chinese Control and Decision Conference (CCDC3781, U 01av m U d d av m (M x . , av m 0 1, 0 1, av m (M x ; 0 255, (M x 255 . av m , G . , av m , , , . M , G , 0.9,min ,0.9av m G U (15 (9, (13 (15, max 1min ,0.9,1ave

9、av o o M x M x t x m A A U (16 (To o o L x L x L x L x , (2, (1(o o L x A t x , (Airlight min min ,0.9,o av ave L x m M x M x U (17 , , . , (H x , (M x (ave M x , (L x . ( 1 . 2.3 5 A , 僔 . 7 0.1% , A , , . A . , (10 0 1, , max(o ave A M x t , , : ,max(max (co c r g b A H x d ,max(max(max (cave o c

10、r g b M x A H x d d . ,o A ,max max 1max c o ave c r g b A H x M x H H (18, 01H d d . H , , , 0.5H ,11max max max 121c avec r g b A H x M x (19 , 亮 .3 (L x A , (F x 1H x L x F x L x A(20 僔 1 .1. 僔僔1 (H x . 2 (M x .,mincc r g bM x H x 3 (M x , (ave M x .aave sM x average M x4 (M x av m .5 (ave M x (L

11、 x .min min ,0.9,o av ave L x m M x M x U6 (ave M x (H x A .,1max max max 1112Tcavec r g bA Hx M x7 (F x .1H x L x F x L x A (H x , (H x (M x (o L x , o A1max max 2o ave A H x M x(21 (F x1o o oH x L x F x L x A(223782201325th Chinese Control and Decision Conference (CCDC, , , , 僔.1 (U =1.3, (H x , (

12、ave M x , (L x , (F x . 2 , U 傼 ,U 0.8, 1.2, 1.6 2.0.00.9av m U d d , U , , , ; 0.9av m U , U . , , av m , U ; av m . 1: 2: U 201325th Chinese Control and Decision Conference (CCDC3783 3: 4: 4 僂4.1 3 4 (U=1.3 . 3 4, , 7 , 8 . , 8 12 , 7 12 13.3, , , .4, , . , 7, 8 .4.2 8 . 8 3 4 2 3 . Matlab7.11 , :

13、 2.33GhzIntelCore2 (Q8200 CPU, 2GB , 64win7. (, 1/50( . 2 3 , 8. , , .2. ( /s 830.063 27.8330.032 5.2530.075 31.113. ( /s 840.033 39.7840.032 43.505 , , , 僔 , , , .3784201325th Chinese Control and Decision Conference(CCDC7 1 S. G. Narasimhan, S. K. Nayar, Contrast Restoration of Weather Degraded Ima

14、ges, IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 25, No. 8, 713-724, 2003. 2 S. Shwartz, E. Namer, Y. Schechner, Blind Haze Separation, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 19841991, 2006. 3 S. G. Narasimhan, S. K. Nayar, Interactive Deweathering of an Imag

15、e Using Physical Models, in Proc. Workshop on Color and Photometric Methods in Computer Vision, 2003. 4 J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or,O. Deussen, M. Uyttendaele, D. Lischinski, Deep photo: Model-based photograph enhancement and viewing, ACM Trans. Graphics, Vol. 27, No. 5, 116:

16、1-116:10, 2008. 5 R. T. Tan, Visibility in Bad Weather from a Single Image, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1-8, 2008. 6 R. Fattal, Single Image Dehazing, in Proc. ACM SIGGRAPH, 1-9, 2008. 9 8 Kaiming He, Jian Sun, Xiaoou Tang, Single Image Haze Removal Using Dark Channe

17、l Prior, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1956-1963, 2009. J.-P. Tarel, N. Hautire, Fast Visibility Restoration from a Single Color or Gray Level Image, in Proc. IEEE Conf. Computer Vision, 22012208, 2009. Fang Li, Haoxian Wang, Xingpeng Mao, Yunlei Sun, Huiyao Song, Fast Single Image Defogging Algorithm, Computer Engineering and Design, Vol. 32, No. 12, 4129-4132, 2011. 10 Haoran Xu, Jianming Guo, Qing Liu, Lingli Ye, Fast Image Dehazing Using Improved Dark Channel Prior, in Proc. IEEE Conf. Information Science and Tech

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论