基于脑电波的便携式睡眠质量监测系统_第1页
基于脑电波的便携式睡眠质量监测系统_第2页
基于脑电波的便携式睡眠质量监测系统_第3页
基于脑电波的便携式睡眠质量监测系统_第4页
基于脑电波的便携式睡眠质量监测系统_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基于脑电波的便携式睡眠质量监测系统金旭扬导师:华东理工大学信息学院万永菁 上海中学信息学科组吴奕明摘要睡眠是人体重要的生理活动,睡眠质量近年来受到高度关注;本文从脑电波角度探寻睡眠监测的有效易行方法,从软硬件角度设计了便携式睡眠质量监测系统。研究分析便携式脑电采集设备采集的数据和CAP睡眠脑电数据库,用功率谱分析和 BP 神经网络探究了睡眠分期的有效算法。实验进行了初步的睡眠分期与质量评估,证明了便携式睡眠质量监测系统的准确性及利用脑电数据进行睡眠分期的有效性。本课题研究,提出了利用单导连脑电信号进行睡眠分期的可行性,为之后研究便携式、市场化的睡眠监测设备以及其他应用提供了重要的实验参考依据。

2、关键词:脑电;脑机接口;睡眠监测;睡眠分期;BP神经网络一、引言睡眠质量研究背景及意义睡眠是一种重要的生理现象。从生到死,人类始终是在觉醒和睡眠中度过。人类通过高质量的睡眠,可以消除疲劳,更好地恢复精神和体力,使人在睡眠之后保持良好的觉醒状态,提高工作、学习效率。人类用于睡眠的时间占人一生中的三分之一。然而迄今我们对这一重要的生理现象的认识还微乎其微,对睡眠进行科学的研究只有短短的几十年历史。 1937 年,Lomis、 Harvey 和Hobart 注意到,睡眠不是处于一种稳定状态,而是要发生一系列非常有规律的周期性变 化。 11986 年, Rechtschaffen 等人重新肯定了 De

3、ment 和 Kleitman 的分期标准,并根据十年来的经验作了一些必要的修改和补充,使之更趋完善。 22007 年,美国睡眠医学会基于上述标准进行改进,发布了新的睡眠分期专业标准,其中规定了各个指标具体的采集标准及判定方法。 3脑电信号分析方法综述随着电子技术的发展,数字处理技术逐步应用到EEG的分析中来。经典的EEG分析方法有:以分析EEG波形的几何性质,如幅度、均值、峭度等为主的时域分析方法和以分析EEG各频率功率、相干等为主的领域方法。早在70 年代初,和4 就应用 Walsh 谱分析离线地研究了一个处于睡眠状态的男性的三段脑电图。等 5应用Walsh顺序的Walsh函数对EEG进行

4、展开,并定义了双值自相关函数,尔后讨论了可以按双值自相关函数来显示各种睡眠EEGB特征。1982年,美国物理学家Hopfield提出了 HNN真型,从而有力地推动了应用神经网络方法解释许多复杂生命过程的进展。自八十年代末以来,人工神经网络的应用已涉及到了脑电分析的各个方面,其中包括自发脑电的睡眠分级及睡眠EEG分析。和6,7把人工神经网络应用于睡眠EEG的自动分析。他们采用无监督学习网络对大量没有经过人工判别的数据进行自组织分类,少量的经过人工判别的标准样本则用来自组织分类结果做解释和量化,从而在网络中形成了 8个聚类区。根据EEG在8个聚类区之间随时间运动的轨迹可以对一夜的睡眠状况有定性的了

5、解。 8脑电监测设备介绍目前,脑电监测设备大致有二:一为大型的、医院专用的多导睡眠监测系统。这种系统需要测量多导连的脑电图、眼电图、肌电图、口鼻气流、呼吸运动、血氧饱和度等众多指标,且有严格的判定规则、需要专业知识。 3二为便携式脑机接口设备。此类设备通常体积小、使用方便、成本也较低,测量的脑电 图多为单导连,但由于获取的数据用途较为单一,可以很好地完成睡眠监测的任务。9课题研究目标本课题利用便携式脑电波采集设备实时获取脑电数据,并且与终端设备通讯实时存储、 分析数据。利用Windows Android等移动平台下编写的软件实现此功能,实现人体的睡眠 监控。二、方法和假设系统软硬件平台的基本架

6、构睡眠质量监测系统的硬件组成用于采集数据的设备是宏智力公司出品的 Brainlink 意念力头箍,它采用基于 Neurosky 芯片平台的Thinkgear芯片,主要用于检测脑电信号。实验采用手机( Android )系统和电 脑(Window系统作为采集终端。图2-1睡眠质量监测系统框图图2-2宏智力公司出品的Brainlink 意念力头箍睡眠质量监测系统的数据采集方式NeuroSky的脑电波采集设备较为轻便,只有前额、左耳垂两个电极(一导连)。设备采 用AAA电池供电,根据介绍续航能力有 8小时(若再并联一颗电池可以更长),没有传统脑 电采集中与脑电频段接近的 50Hz工频交流干扰信号。设

7、备采用无线蓝牙连接,更有利于睡 眠时数据的传输;耳垂采用导电夹,容易固定;利用心电图电极片改装前额电极,也可以弥 补原本接触不良的缺点。为了完成单向传输数据的目的,使用的蓝牙模拟用口(发送)芯片能耗低、续航能力 强、编程较为简易。接收端可以是任何蓝牙设备,只需一次配对后就可自动连接,对于手 机、电脑硬件的要求不高。初步测试时,采集使用的是Microsoft Windows 平台,使用 Neurosky提供的 API接口,在Visual C+上编写简单的程序即可完成数据的存盘。采样频率约为,远高于脑电信 号的最高有效频率30Hz的两倍,符合采样定理。图2-3 Windows 7下的采集、分析软件

8、利用Neurosky提供的Android API接口,在Android平台下的脑电波预览、采集工作 也得以完成,程序可以在后台运行,并且将采样数据即使存盘,在实际使用过程中更为方 便,也省去了用电脑建立连接、定义接口的繁杂步骤,适合移动平台。图2-4 Android下的采集、预览软件基于脑电信号的睡眠质量监测方法脑电信号预处理方法脑电波在时域上属于非平稳随机信号,实验中采集的脑电波只有一导连,因此信号不稳 定、噪波严重。需要经过初步的低通数字滤波预处理。为方便起见,频率衰减带上限取到高 于脑电波分析中有效频率30Hz的50Hz。数字滤波器包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)

9、滤波器两大类。FIR滤 波器可以得到严格的线性相位,相比IIR需要采用较高的阶数(约是IIR的五至十倍),但 软件实现方便。10假设FIR滤波器的单位冲击响应 h(n)为一个长度为N的序列,那么滤波器的系统函数 为:V-=£从几片Fn=0(2-1)上式的差分形式为:AT-1m=0(2-2)定是无限时宽的,无法实由于理想滤波器在边界频率处不连续,故其时域信号hd(n) 现。因此,需要把具有理想线性相位特性的滤波器曲线用窗函数截取:= %缶!"金(2-3)这种设计思想称为窗函数设计法。其中,常用的汉明窗(Hamming Window函数如下:,5) =。54 -s 小(2-4)

10、幅信函数为: 2 727r(2-5) 11= 034M,£(3)+ 0.23HzM卬-._ . + 0.23H r(w + . _ 1使用Matlab的"1工具设计300点的FIR低通滤波器,采用汉明窗,以 512Hz作为采样频率,50Hz作为率减带,得到的滤波器幅频响应曲线如下:图2-5 300点低通滤波器幅频响应曲线(采用归一化角频率,2九即为实际采样频率的512Hz)脑电信号的频域分析脑电波按频率从高到低划分依次为:B 波(1430Hz),民波(814Hz), 9波(48Hz),6波4也)。脑电波频率范围精神状态B波1430Hz运动感觉节律,放松可集中注意力,有协调性

11、,思 考,对于自我和周围环境意识清楚机警,激动a波814Hz放松但不困倦,安静,有意识9波48Hz直觉的,回忆的,幻想,想象,浅睡6波4Hz深度睡眠,非快动眼睡眠,无意识表2-1脑电波的频段划分以及不同类型脑电波所反映出的脑部精神状态离散时间序列x(n)的傅立叶(Fourier Transform )变换是:F3 = 土工,3 1(2-6)如已知随机信号x(n)的自相关函数r(k),那么功率谱密度函数就定义为:48PM = £已3:(2-7)功率谱函数的另一定义是:2xnenn-l(2-8)理论上,离散信号处理方法对有限带宽的信号能做准确分析,但有限带宽信号在时域上 是无限长的,只取

12、其中有限长的一段进行傅立叶变换,相当于在原信号上加了矩形窗运算 加窗在频域上,对原功率谱起到了平滑的作用。N(2-9)13Z 盯(n)£一 ri=l其中,w(n)表示窗口函数。常用的窗有三角窗、汉宁窗、汉明窗、布莱克曼窗等。这些窗的旁瓣电平比矩形窗低,但分辨率也较矩形窗低。根据美国睡眠医学会2007年的标准,睡眠分期的脑电标准如下:睡眠阶段划分规则(仅含脑电,且忽略例外情况)W(觉醒期)枕区a波含量大于50%N1 (非快速眼动期1)a波减弱,低幅度、47Hz的波含量大于50%N2(非快速眼动期2)开始阶段:出现与觉酉星无关的 K复合波或者纺锤波 持续阶段:低幅度、47Hz的波(不含K

13、复合波或纺 锤波)N3(非快速眼动期3)2Hz的慢波含量大于20%R (快速眼动期)出现低幅度、47Hz的波(不含K复合波或纺锤波)表2-2睡眠分期的脑电标准3其中,非快速眼动期睡眠深度从深到浅,依次是:N3 N2、N1人工神经网络(Artificial Neural Network )是由大量简单的处理单元广泛连接组成 的复杂网络,用于模拟人类大脑神经网络的结构和行为。它反映了人脑功能的许多基本特性,但它并不是 人脑全部的真实写照,而只是对其作某种简化、抽象和模拟15o在各种学习算法中,多层网络的反向传播算法(简称 BP算法)应用最为广泛。BP算法 最早是由Werbos在1974年提出来的,

14、Rumelhart等人于1985年发展了该理论,提出了清 晰而又严格的算法。BP算法适用于前向网络,它采用有导师学习的训练形式,提供输入矢 量集的同时提供输出矢量集,通过反向传播学习算法,调整网络的连接权值,以使网络输出 在最小均方差意义下,尽量向期望输出接近,反向学习的进程由正向传播和反向传播组成。 在正向传播过程中,输入信息经隐含神经元逐层处理并传向输出层,如果输出层不能得到期 望的输出,则转入反向传播过程,将实际输出与期望输出之间的误差沿原来的连接通路返 回,通过修改各层神经元的连接权值,使误差减小,然后转入正向传播过程,反复循环,直 至误差小于给定的值为止。X= (X i1 , X i

15、2,,Xim)和输出设有N个训练对组成的训练集,每一个训练对用输入矢量矢量D二(di1, d i2,,d in) , 1 < i < No在前向传播中,把 X作为网络的输入,根据现有 的W计算网络的输出Y=(yi1, y i2,,y in)。比较实际输出Y与期望输出D之间的差异,计 算每一个输出单元的平方误差(yj- d j)2, 1 < j < n。把这些误差进行加总得到误差函数:(2-10)所要做的就是通过改变 W来减小E,以使得所有的输入矢量都尽量与相应的输出矢量相 匹配。因此学习的过程就转化为定义在权值空间上的目标函数E的极小化问题。在训练过程中总是以尽可能快的

16、减小 E的方式进行。一般它依赖于在权值空间中是否沿梯度方向搜索,所以采用梯度下降法来训练权值。每一个权值w的变化量Wj按如下方式计算:dEdwij(2-11)其中z为学习率,是控制算法收敛速度的参数。在第一阶段得到的总误差平方和又在第二阶段被一层一层地反向传播回去,从输出单元 到输入单元。权值的调整决定于传播过程中的每一步。由于 小fi和E都是连续可微的,因 此,可以应用以下公式计算 E/ Wj的值:她dft dli dwij(2-12)E dE dft dliW的修改可以有两种方式,一是对于每一训练对 (Xi, Di)都修改一次 W另一种方式是输 入全部的训练又t后再加总 w并进行修改。训练

17、矢量集中训练对的数目称为一个epoch。当epoch不是非常大的时候,后一种方式能够加快收敛的速度。因为第一种方式只能针对某一 特定的训练对减小误差函数,而可能增大其它训练对的误差函数;第二种方式总是以减小总 体误差函数为目标的。所以采用第二种方式16 0图2-6 BP神经网络结构图三、数据记录与分析系统各部分效果验证滤波器效果验证为了验证实时滤波的效果以及硬件性能,在清醒时采集的脑电波中截取了一段约4秒的信号进行验证。经过检验,滤波器效果良好,经过实时滤波的数据已经符合脑电波分析的要 求。图3-1滤波前后的脑电信号波形对比(采样率 512Hz)图3-2滤波前后的脑电信号频谱对比(采样率 51

18、2Hz)加窗频域分析效果验证由于睡眠深时低频率的脑电波所占功率比例会增强,睡眠浅时会减弱,因此使用单一频 段的波所占功率比例可以简单判读睡眠的深浅程度。实验对象佩戴脑电采集设备一晚上约九小时的睡眠初步验证,每30秒数据、加汉明窗频域分析了 6波(4Hz)所占的功率比例,得到了如下的图像。经过比对与参考,该图像 已能大致反映睡眠的深浅程度,符合人体睡眠周期的客观规律。加窗频域分析的效果,得以 验证。图3-3加窗频域分析后所得6波所占的功率比例睡眠分期判定方法睡眠深浅的目测方法实验对象佩戴脑电采集设备,未服用任何辅助药物或干预治疗,进行了连续五晚的睡眠 脑电波采集。受试者身体健康,入睡时间正常且有

19、规律,睡眠周期较为完整。由于睡眠监测 实验的“第一晚效应”,即受试者在第一次佩戴设备时难以入睡、或是睡眠期间易惊醒、没 有完整的睡眠周期的情况,因此只采用了第二晚至第五晚的数据进行分析。采样频率固定为 512Hz,每晚的睡眠连续时长均超过 6小时。多次取连续十分钟(600秒)片段,每30秒加汉明窗频域分析得到了各频段的脑电波所 占的功率比例。目测发现,有如下规律:6 波和a波频率的峰或谷出现的位置大都重合, 即一种波形的频率处于峰值时,另一种波形的频率处于谷值。在经过数十次的非连续采集片 段分析后,确认了本次实验中上述规律的普遍性。图3-4 6波和a波频率比例的峰或谷出现的位置重合BP神经网络

20、分析由于条件的限制,难以用本次实验所用的便携式设备获取大量、准确的脑电波数据,也 难以得到由医生给出的专业睡眠分期判断。这部分研究采用从PhysioNet17获得的CAP睡眠脑电数据库18进行分析和算法验证。该睡眠监测实验在意大利帕尔马而Ospedale Maggiore睡眠障碍研究中心进行。此数据库有 108例多导睡眠记录,每例至少记录了三导连的脑电信 号(根据10-20国际通用系统,电极为:F3或F4、C3或C4 O1或。2以A1或A2作为参 考电极)。其中的16例由健康的成年受试者完成,这16名受试者无神经系统疾病,未使用 会影响中枢神经的药物。受试者为 9名女性、7名男性,年龄从23岁

21、至42岁不等。此外, 在睡眠中心接受过训练的神经病学家,还根据 Rechtschaffen & Kales 2规则对每一例记录 进行了以30秒为一间隔的睡眠分期。值得注意的是,R&K规则中把NREM1眠分成了四个阶段,由浅至深依次为S1至S4。在美国睡眠医学会基于上述标准的改进中,S3和S4被合并为N3本实验中,算法输入和输出的睡眠分期数据均已把二者合并。为了验证神经网络的可行性与操作性,实验先提取第一位受试者(37岁、女性)的C4-A1导连脑电波片段进行分析。根据数据附带的睡眠分期注释,对于睡眠的六个分期(这里 以W S1、S2、S& S4、REW),都各自随机选出三

22、个片段,共 18个。每一片段时长一分 钟,采样率512Hz,且片段彼此之间并不重合或者连续。在 Matlab中,利用前文所提方 法,把一分钟的数据加汉明窗功率谱分析,取 6波所占的功率比例作为横轴,a 波所占的 功率比例作为纵轴,以不同颜色分别标出各个阶段画出了散点图。从图中,可以发现代表六 个睡眠阶段的点,彼此之间已经可以大致进行区分。另外,由于在实际实验中会合并S3和S4,且会增加一个输入变量一一0波所占的功率比例,利用 BP神经网络进行验证的方法的可行性得以证明。图3-5第一位受试者的睡眠阶段散点图实验提取第一、二、五、十、十一、十二位受试者(三位男性,年龄 23岁、29岁、34 岁;三

23、位女性,年龄28岁、35岁、37岁)的脑电波片段进行分析,每位受试者、每个睡眠阶段,各选两个不连续片段,作为学习样本。片段的采样率均为512Hz,均为C4-A1导连。受试者身体良好,睡眠较为完整。设计实验所需的BP网络时,输入层有三个节点,即 6波、8波和a波所占的功率比 例,以-1至1分别进行归一化处理。输出层有五个节点,分别为 (1,0, 0, 0, 0 )、(0,1,0, 0, 0 )、(0, 0, 1,0, 0 )、(0, 0, 0, 1,0 )、(0, 0, 0, 0, 1 ),代表了分期的五个阶段:N1、N2、N& REM W如前文,S1、S2分别对应N1、N2,S&

24、;S4合并为N&隐含层节点根据经验一般应满足 2n>m其中n为隐含节点数19。由于本文的样本数为60个, 故n取6,即隐含层有6个节点。隐含层采用对数 S形转移函数(Logahthmic sigmoid transfer function)(3-1)输出层采用线性函数: X(3-2)使用Matlab的newff工具,采用梯度下降自适应学习率训练函数创建 BP神经网络。学 习率定为,目标误差,最大迭代次数 500。60个样本中,随机选取 50个用于训练,另外未 经过训练的10个用于验证。经过验证,用于验证的样本中有 4个判断错误,神经网络的效果并不十分理想。但这四 组判断错误的数据

25、中,有一组把 W误判为N1,有一组把N1误判为REM误差并未影响对睡 眠深浅度的判断。止匕外,对于十组检验样本中的N3(深度睡眠)均为判断错误,可见 BP神经网络还是有着一定的准确程度。四、结论本文主要探究了基于脑电波的便携式睡眠质量监测系统的可行性以及其硬件、软件系统的技术路线和实现方法,注重考虑了硬件系统的便携性与成本,在关注算法的有效性同时,探究其简易和可操作程度。本文的实验证明,便携式脑电波采集设备具有传统设备无可比拟的移动性,适合个人、家庭用户使用;利用它可以获得较高质量的脑电信号、用于分析,结合神经网络等算法也可以对于睡眠质量进行可靠的监测与评估,还能够初步实现对于睡眠的分期。但若

26、要根据医学上严格的睡眠分期标准进行评估,需要采集多导连的脑电以及其他心电、呼吸等信号综合评估,且要求较高的职业技能与素养,只凭便携式睡眠监测系统难以满足要求。本文的实验结果,将为人们更好地研究便携的睡眠监测系统提供有意义的实验依据与参考。探究单导连脑电信号与人体睡眠的相关性,以及脑电波的现代高级分析算法,是对本文实验结果进行探讨的重要理论基础。此外,探究脑电波的诱发、治疗理论,和便携式脑电波采集设备的准确性、可靠性及其市场化后的诊断、评估等应用价值,也可以作为本课题后续的发展方向。参考文献1 蔡文英 , 钟龙云 , 张作生 . 睡眠脑电波的计算机分析. 中国科学技术大学学报. , ,Jun.,

27、 1990.2Rechtschaffen, A. and Kales, A. A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects. University of California, Brain Information Service/Brain Research Institute, Los Angeles, CA, 1968.3Iber C, Ancoli-Israel S, Chesson A, and Quan SF for the

28、 American Academy ofSleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events:Rules, Terminology and Technical Specifications, 1st ed.: Westchester, Illinois:American Academy of Sleep Medicine, 2007.4Yeo ., et al. Naval Res Catholic Univ of Amer 1972; 293297.5Larsen ., et al. Ma

29、th Biosci 1976; 31: 237253.6Roberts S, et al. Med Biol Eng Comput 1992; 30: 509517.7Roberts S, et al. IEEE procedings-F 1992; 139(6): 420425.8 张杰 , 王明时 . 睡眠脑电的研究 . 国外医学生物医学工程分册 , 1997 年第 20 卷第 2 期 .9SHAMBROOM, J. R., F 0REGAS, S. E. and JOHNSTONE, J. (2012), Validation of an automated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21:?221 - 230. doi:?.10 铙志强 , 叶念渝 . FIR 和 IIR

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论