




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、有关平行四边形的存在性问题一知识与方法积累:1. 已知三个定点,一个动点的情况在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标。2. 已知两个定点,两个动点的情况已知点C(0,2), B(4,0),点A为X轴上一个动点,试在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形(画出草图即可)分以下几种情况:(1)以BC为对角线,BE为边;(2)以CE为对角线,BC为边;(3)以BE为对角线,BC为边; 3. 方法归纳:先分类;(按对角线和边)再画图;(画草图,确定目标点的大概位置)后计算。(可利用三角形全等性质和平行四边形性质
2、,准确求点的坐标)一因动点产生的平行四边形问题如图1,在平面直角坐标系中,已知抛物线经过A(4,0)、B(0,4)、C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标 二因动点产生的等腰三角形问题例1 2012年扬州市中考第27题如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的
3、函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 图1三因动点产生的直角三角形问题1. (2011沈阳考点:二次函数综合题。点评:本题是二次函数的综合题型,其中涉及的到大知识点有抛物线的顶点公式和三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果)如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D(1)求抛物线的函数表达式;(2)求
4、直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限当线段PQ=AB时,求tanCED的值;当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答四因动点产生的面积问题例 1 2012年河南省中考第23题如图1,在平面直角坐标系中,直线与抛物线yax2bx3交于A、B两点,点A在x轴上,点B的纵坐标为3点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PDAB于点D(1)求a、b及sinACP的值;(2)设点P
5、的横坐标为m用含m的代数式表示线段PD的长,并求出线段PD长的最大值;连结PB,线段PC把PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为910?若存在,直接写出m的值;若不存在,请说明理由图1五因动点产生的线段和差问题例1 2012年山西省中考第26题如图1,在平面直角坐标系中,抛物线yx22x3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l/AC交抛物线于点Q试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条
6、件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使BDM的周长最小,求出点M的坐标图1因动点产生的相似三角形问题原理:相似定理SAS(两边对应成比例且夹角相等,两个三角形相似.)方法:1观察两三角形是否为特殊三角形,找出两三角形相等的角2、设所求点的坐标进而用函数解析式来表示各边的长度,之后运用相似对应边成比例来列方程求解。 题型一:直角三角形相似的问题例题11、如图,抛物线经过三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直
7、线AC上方的抛物线上有一点D,使得DCA的面积最大,求出点D的坐标答案:练习. 如图所示,已知抛物线与轴交于A、B两点,与轴交于点C(1)求A、B、C三点的坐标(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似若存在,请求出M点的坐标;否则,请说明理由题型二存在公共角的两三角形相似问题例题 如图,在平面指教坐标系内,已知A(0,6),B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向O移动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向A移动,设点P、Q
8、移动的时间为t秒。(1)求直线AB的解析式;(2)当t为何值时,APQ于AOB相似?(3)当t为何值时,APQ的面积为24/5个平方单位?答案:(1) 设直线AB的解析式为ykxb由题意,得 解得 所以,直线AB的解析式为yx6 (2)由AO6, BO8得AB10所以APt ,AQ102t1)当APQAOB时,APQAOB所以 解得t(秒) 2)当AQPAOB时,AQPAOB所以 解得t(秒) (3)过点Q作QE垂直AO于点E在RtAOB中,SinBAO 在RtAEQ中,QEAQSinBAO(10-2t)8t( 2分)SAPQAPQEt(8t) 4t 解得t2(秒)或t3(秒) 练习:已知:如
9、图,在平面直角坐标系中,是直角三角形,点的坐标分别为,(1)求过点的直线的函数表达式;点,(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;(3)在(2)的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如存在,请求出的值;如不存在,请说明理由ACOBxy题型三由平行得出角相等的三角形相似问题例题:RtABC在直角坐标系内的位置如图1所示,反比例函数在第一象限内的图像与BC边交于点D(4,m),与AB边交于点E(2,n),BDE的面积为2(1)求m与n的数量关系;(2)当tanA时,求反比例函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在
10、射线FD上,在(2)的条件下,如果AEO与EFP 相似,求点P的坐标答案:(1)如图1,因为点D(4,m)、E(2,n)在反比例函数的图像上,所以 整理,得n2m(2)如图2,过点E作EHBC,垂足为H在RtBEH中,tanBEHtanA,EH2,所以BH1因此D(4,m),E(2,2m),B(4,2m1)已知BDE的面积为2,所以解得m1因此D(4,1),E(2,2),B(4,3)因为点D(4,1)在反比例函数的图像上,所以k4因此反比例函数的解析式为设直线AB的解析式为ykxb,代入B(4,3)、E(2,2),得 解得,因此直线AB的函数解析式为图2 图3 图4(3)如图3,因为直线与y轴交于点F(0,1),点D的坐标为(4,1),所以FD/ x轴,EFPEAO因此AEO与EFP 相似存在两种情况:如图3,当时,解得FP1此时点P的坐标为(1,1)如图4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哈尔滨医科大学《台港与海外华文文学》2023-2024学年第二学期期末试卷
- 2024吉林省吉高服务区管理有限公司劳务派遣项目招聘53人笔试参考题库附带答案详解
- 山西晋中理工学院《统计软件R语言》2023-2024学年第二学期期末试卷
- 菏泽学院《数字化产品设计与工艺(二)》2023-2024学年第二学期期末试卷
- 湖南冶金职业技术学院《生物工程专业导论与研讨》2023-2024学年第二学期期末试卷
- 山东信息职业技术学院《三维数字图像设计》2023-2024学年第二学期期末试卷
- 2025届山东省聊城市高唐一中高三下学期3月月考数学试题
- 职高建筑说课课件
- 学法分享培养对知识的兴趣课件-高中下学期主题班会
- 卵巢囊肿的护理查房课件
- 2025年宁波卫生职业技术学院单招职业技能测试题库附答案
- 征文投稿(答题模板)原卷版-2025年高考英语答题技巧与模板构建
- 空压机每日巡检记录表-
- 桩基工程技术标投标文件(技术方案)
- 2024年吉林水利电力职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2025年重庆联合产权交易所集团招聘笔试参考题库含答案解析
- 广西电力职业技术学院《外国刑法》2023-2024学年第一学期期末试卷
- 科技安全课件
- 2024年屠宰场屠宰加工业务承包经营协议3篇
- 双通道脊柱内镜技术临床应用专家共识(2024版)解读
- 婚姻家庭矛盾纠纷排查工作总结六篇
评论
0/150
提交评论