有限元的发展历史现状及应用前景_第1页
有限元的发展历史现状及应用前景_第2页
有限元的发展历史现状及应用前景_第3页
有限元的发展历史现状及应用前景_第4页
有限元的发展历史现状及应用前景_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、有限元分析的发展趋势“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。<br>近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分

2、析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:<br>增加产品和工程的可靠性;<br>在产品的设计阶段发现潜在的问题<br>经过分析计算,采用优化设计方案,降低原材料成本<br>缩短产品投向市场的时间<br>模拟试验方案,减少试验次数,从而减少试验经费<br><br>国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近1

3、5年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。目前流行的CAE分析软件主要有NASTRAN、ADINA、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。MSC-NASTRAN软件因为和NASA的特殊关系,在航空

4、航天领域有着很高的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上组织开发了DYTRAN。近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。ANSYS软件致力于耦合场的分析计算,能够进行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。ADINA非线性有限元分析软件由著名的有限元专家、麻省理工学院的K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。并同时具有隐式和显式两种时间积分算法。由于其在非线性求解、流固耦合分析等方面的强大功能,

5、迅速成为有限元分析软件的后起之秀,现已成为非线性分析计算的首选软件。<br><br>纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:<br><br>1、与CAD软件的无缝集成<br>当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。为了满足工程师快捷地解决复杂工程问题的要求,许多商业化有限元分析软

6、件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。有些CAE软件为了实现和CAD软件的无缝集成而采用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。<br><br>2、更为强大的网格处理能力<br>有限元法求解问题的基本过程主要包括:分析对象的离散化、有

7、限元求解、计算结果的后处理三部分。由于结构离散后的网格质量直接影响到求解时间及求解结果的正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。自动六面体网格划分是指对三维实体模型程序能自动的划分出六面体网格单元,现在大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。对于四面体

8、单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。自适应性网格划分是指在现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。<br><br>3、由求解线性问题发展到求解非线性问题<br>

9、随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材料的塑性、蠕变效应时则必须考虑材料非线性。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。它们的共同特点是具有高效的非线性求解器、丰富而实用的

10、非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。<br><br>4、由单一结构场求解发展到耦合场问题的求解<br>有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。现在用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即“热力耦合”的问题

11、。当流体在弯管中流动时,流体压力会使弯管产生变形,而管的变形又反过来影响到流体的流动这就需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓“流周耦合”的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。<br><br>5、程序面向用户的开放性<br>随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境,允许用户根据自己的实际情况对软件进行扩充,包

12、括用户自定义单元特性、用户自定义材料本构(结构本构、热本构、流体本构)、用户自定义流场边界条件、用户自定义结构断裂判据和裂纹扩展规律等等。<br><br>关注有限元的理论发展,采用最先进的算法技术,扩充软件的能,提高软件性能以满足用户不断增长的需求,是CAE软件开发商的主攻目标,也是其产品持续占有市场,求得生存和发展的根本之道<br><br>希望我的回答对你有帮助!有限元发展综述一、有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有

13、限的,节点的数目也是有限的,所以称为有限元法(FEMI,FiniteElementMethod)。有限元法是最重要的工程分析技术之一。它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的

14、变化,理论设计代替了经验类比设计。目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。二、有限元法的孕育过程及诞生和发展大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分

15、析是将偏微分方程改写为积分表达式的另一途经。在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。所以,到这时为止,实现有限元技术的第二个理论基础也已确立。20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功

16、。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R.W.Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”,这样的名词。此后,这样的叫法被大家接受,有限元技术从此正式诞生,并很快风靡世界。三、FEM的计算方法:FEM方法作为一种技术更多的与FEM软件的发展紧密的结合起来。某种主流软件的FEM方法必然会一直朝该FEM方法的方向发展,只有当新的FEM方法比现有的FEM方法更加优越时才会放弃现有的FEM方法,从而使FEMT法有较大的发展。因此目前的FEM方法仍然将统治现在的FEM世界。当今主流的FEM件有彳

17、国的ASKA英国的PAFEC法国的SYSTUS美国的ABQUSADINAANSYSBERSAFEBOSORCOSMOSELASMARG口STARDYNE公司的产品。这些软件所代表的方法有:COSMOS件使用的快速有限元算法(FFE)。在传统有限元分析的数值计算方法之中,有直接计算法(DirectSolver)与迭代法(Iterative)两种。由于在过去的经快速有限元法是一种可以验中,迭代法一直无法直接而有效的保证数值计算的收敛性,保证收敛性的迭代法,该方法计算速度也很快。MARC:件以Lagrange算法为主,兼有ALE和Euler算法;以显式求解为主,兼有隐式求解功能。ANSY歌件有直接求

18、解器,如波前求解器,可计算出线性联立方程组的精确解。ANSYS程序还提供了一个有效的稀疏矩阵求解器,它既可用于线性分析,也可用于非线性分析。即要求求解精度又要求求解时间的静态及瞬态分析中,该求解器可代替迭代求解器。稀疏矩阵求解器只能用于真正的对称矩阵,与波前及其它直接求解器相比,稀疏矩阵求解器能显著加速求解速度。四、其他求解方法:显式/隐式有限元法:无需对刚度矩阵求逆,只需对质量矩阵求逆,而质量矩阵往往可以简化为对角阵;没有增量步内迭代收敛问题,可以一直计算下去。隐式计算具避免误差累积、存在迭代不收敛的问 相对与隐式计算显示计算具有时间 计算量随计算规模基本为线性增长的有时间步长增量较大、每个

19、荷载步都能控制收敛,题、计算量随计算规模增大而成超线性增长的特点。步长很小、误差累积、不存在迭代不收敛的问题、特点。这种计算方法的代表软件有ABQUS离散单元法:离散单元法也被称为散体单元法,最早是1971年由Cundall提出的一种不连续数值方法模型,这种方法的优点是适用于模拟节理系统或离散颗粒组合体在准静态或动态条件下的变形过程。离散单元法不是建立在最小势能变分原理上,而是建立在最基本的牛顿第二运动定律上。它以每个刚体的运动方程为基础,建立描述整个破坏过程的显式方程组后,通过动力松弛迭代求解。接触判断法:离散元通过块体之间的相互接触判断得到相互之间的作用力,进而形成运动方程。因此,快速而准

20、确的接触算法对离散元方法非常重要。由于离散元计算过程中块体往往会发生较大位移,使得原有的块体间的空间拓扑关系发生变化,使接触判断变得更加复杂。目前离散元对二维问题的接触分析已经比较成熟,但对于三维问题则应用比较有限,其中的重要原因就是三维接触判断过于复杂,特别是允许出现大位移的三维接触,目前还是一个有待进一步研究的问题。刚体弹簧单元法:刚体弹簧单元法(RigidBodySpringMethod,RBSM)最早由Kawai于1976年提出,当初提出的意图是以较少的自由度来求解结构问题。它把体系分解为一些由均布在接触面上的弹簧系统联系起来的刚性元,刚性元本身不发生弹性变形,因此结构的变形能仅能储存在接触面的弹簧系统中。由于刚体弹簧元单元间的作用力通过单元界面上弹簧传递,可以直接得到界面的作用力,因此在极限分析等领域也有着较好的应用。无网格法:传统有限元需要构造特定的单元网格来形成位置插值函数,是否可以让计算机根据节点信息来“自动”形成位移插值函数?无网格法可以实现。无网格法对函数的要求有:1、光滑连续;2、影响的节点有限。无网格法常用插值方法有:移动最小二乘、核函数与径向基函数。整体方程有配点法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论