![一元函数积分学的应用_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/5/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe1.gif)
![一元函数积分学的应用_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/5/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe2.gif)
![一元函数积分学的应用_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/5/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe3.gif)
![一元函数积分学的应用_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/5/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe4.gif)
![一元函数积分学的应用_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/5/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe/4d6099d5-bbde-4eb1-a5dc-0666aa7811fe5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上一元函数积分学的应用一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。一元积分主要分为不定积分和定积分。化为函数图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间a,b中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。积分的应用十分巧妙便捷,能解决许多不直观、不规则的或
2、是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间为若干子区间,任取一个子区间,求在该区间上局部量的的近似值;(2)以为被积式,在上作积分即得总量的精确值。(分割,近似,求和,取极限)在实际应用中,通过在子区间上以“匀”代“非匀”或
3、者把子区间近似看成一点,用乘法所求得的近似值就可以作为所需要的近似值,即为所寻求的积分微元。定积分在几何中的应用在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论:1、 平面图形的面积求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。1、直角坐标情形在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲线与直线及 x
4、 轴所围曲边梯形面积为 A ,则 右图所示图形面积为 2、 极坐标情形求由曲线及围成的曲边扇形的面积 .在区间上任取小区间则对应该小区间上曲边扇形面积的近似值为所求曲边扇形的面积为2、 平面曲线的弧长定义: 若在弧 AB 上任意作内接折线 ,当折线段的最大边长 l0 时,折线的长度趋向于一个确定的极限 ,则称此极限为曲线弧 AB 的弧长 ,即并称此曲线弧为可求长的.定理: 任意光滑曲线弧都是可求长的. (1) 曲线弧由直角坐标方程给出:弧长元素(弧微分) :因此所求弧长(2) 曲线弧由参数方程给出:弧长元素(弧微分) :因此所求弧长(3) 曲线弧由极坐标方程给出:则得弧长元素(弧微分) :因此
5、所求弧长3、 已知平行截面面积函数的立体体积设所给立体垂直于x 轴的截面面积为A(x), 上连续,则对应于小区间的体积元素为因此所求立体体积为特别 , 当考虑连续曲线段轴旋转一周围成的立体体积时,有当考虑连续曲线段绕 y 轴旋转一周围成的立体体积时,有dx说明: (以摆线为例)4、 旋转体的侧面积设平面光滑曲线求它绕 x 轴旋转一周所得到的旋转曲面的侧面积 .取侧面积元素:位于【x,x+dx】上的圆台的侧面积dS=2yds=2f(x)积分后得旋转体的侧面积注意:侧面积元素2ydx不是薄片侧面积S 的线性主部。若光滑曲线由参数方程给出,则它绕x轴旋转一周所得旋转体的侧面积为小结:1、平面图形的面积 边界方程:直角坐标方程 参数方程 极坐标方程2、 平面曲线的弧长弧微分:曲线方程:直角坐标方程 参数方程 极坐标方程3. 已知平行截面面积函数的立方体体积旋转体的体积:绕x轴: 绕y轴:(柱壳法)4、 旋转体的侧面积绕x轴旋转,侧面积元素为dS=2yds(注意在不同坐标系下ds的表达式)定积分在物理学中的应用在物理学中,一元积分主要应用于变力沿直线做功、液体的静压力、连续函数的平均值。下面让我们来分类讨论:1、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度燃气市场拓展与代理合同
- 2025年度企业股权激励与员工退休计划合同范本
- 2025年度进口消防设备采购与安装调试合同
- 2025年度企业员工健康体检服务采购合同标准
- 2025年度建筑施工材料质量保险合同范本
- 2025年度金融机构股东股权变更与业务整合合同
- 2025年度旅游景区建筑装修合同范本
- 2025年度绿色建筑示范工程售楼处施工合同
- 2025年回迁房买卖合同范本(含房屋验收标准)
- 2025年度跨国公司股权分割及全球业务重组合同
- 2024年全国现场流行病学调查职业技能竞赛考试题库-上部分(600题)
- (一模)晋城市2025年高三年第一次模拟考试 物理试卷(含AB卷答案解析)
- 安徽省蚌埠市2025届高三上学期第一次教学质量检查考试(1月)数学试题(蚌埠一模)(含答案)
- 医院工程施工重难点分析及针对性措施
- 2025年春节安全专题培训(附2024年10起重特大事故案例)
- 2023年春节后建筑施工复工复产专项方案
- 电梯设备维护保养合同模板范本
- 叉车操作规程
- 综合布线类项目施工图解(共21页)
- 圆锥曲线方程复习
- 教科版九年级物理上册期末考试(真题)
评论
0/150
提交评论