变化率问题导学案_第1页
变化率问题导学案_第2页
变化率问题导学案_第3页
变化率问题导学案_第4页
变化率问题导学案_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1.1变化率问题导学案一问题提出问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?n 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 。n 如果将半径r表示为体积V的函数,那么 。分析:,1 当V从0增加到1时,气球半径增加了气球的平均膨胀率为 。2 当V从1增加到2时,气球半径增加了气球的平均膨胀率为 。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 问题2 高台跳水hto 在高台跳水运动中,运动员相对于水

2、面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?思考计算:和的平均速度在这段时间里,= ;在这段时间里, = ;探究:计算运动员在这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,所以,= ;虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态二平均变化率概念:1上述

3、问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率。2若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)3 则平均变化率为x1x2Oyy=f(x)f(x2)x= x2-x1y =f(x2)-f(x1)x思考:观察函数f(x)的图象平均变化率表示什么?三典例分析例1已知函数f(x)=的图象上的一点及临近一点,则 例2 求在附近的平均变化率。四课堂练习1质点运动规律为,则在时间中相应的平均速度为 2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+x,1+y)作曲线的割线,

4、求出当x=0.1时割线的斜率.五回顾总结1平均变化率的概念2函数在某点处附近的平均变化率1.1.2导数的概念教学目标:1了解瞬时速度、瞬时变化率的概念;2理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念教学过程:一瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:思考:当趋近于0时,平均速度有什么样的变化趋势?结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一

5、边趋近于2时,平均速度都趋近于一个确定的值 。从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是 。为了表述方便,我们用表示“当,趋近于0时,平均速度趋近于定值”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。二、 导数的概念函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在处的导数,记作或,即 说明:(1)导数即为函数y=f(x)在x=x0处的 。 (2),当时,所以= 。三典例分析例1(1)求函数y=3x2在x=1处的导数.例2(课本例1)将原油精炼为汽油、柴油、塑胶等各种

6、不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义四课堂练习1质点运动规律为,求质点在的瞬时速度为2求曲线y=f(x)=x3在时的导数3例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义五回顾总结1瞬时速度、瞬时变化率的概念2导数的概念六布置作业1.1.3导数的几何意义教学目标:1了解平均变化率与割线斜率之间的关系;2理解曲线的切线的概念;3通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义教学过程:一、曲线的切

7、线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?图3.1-2我们发现,当点沿着曲线无限接近点P即x0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的 .问题:割线的斜率与切线PT的斜率有什么关系? 切线PT的斜率为多少?.二、导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,即 说明:求曲线在某点处的切线方程的基本步骤:求出P点的坐标;求出函数在点处的变化率 ,得到曲线在点的切线的斜率;利用点斜式求切线方程.(二)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个

8、函数,我们叫它为f(x)的导函数.记作:或,即: 注:在不致发生混淆时,导函数也简称导数(三)函数在点处的导数、导函数、导数 之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。三典例分析例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.(2)求函数y=3x2在点处的导数.解:(1),所以,所求切线的斜率为2,因此,所求的切线方程为即(2)因为所以,所求切

9、线的斜率为6,因此,所求的切线方程为即(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数 解: 。例2(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况解:我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况(1) 当时,曲线在处的切线平行于 ,所以,在附近曲线比较 ,几乎没有升降(2) 当时,曲线在处的切线的斜率,所以,在附近曲线 ,即函数在附近单调 (3) 当时,曲线在处的切线的斜率,所以,(4) 在附近曲线 ,即函数(5) 在附近单调 从图3.1-3可以看出,直线的倾斜程度 直线的倾斜程度,这说明曲线在附近比

10、在附近下降的 例3(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象根据图像,估计时,血管中药物浓度的瞬时变化率(精确到)解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的 ,从图像上看,它表示曲线在此点处的切线的斜率如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值作处的切线,并在切线上取两点,如,则它的斜率为: 所以 下表给出了药物浓度瞬时变化率的估计值:0.20.40.60.8药物浓度瞬时变化率0.40-0.7-1.4四课堂练习1、已知函数,若,问(x)=-4表示的几何意义是 。2

11、、1)函数在点P处的导数值为,则函数在点P处的切线的斜率为 ,切线的倾斜方式是 。2)函数在点P处的导数值为3,则函数在点P处的切线的斜率为 ,切线的倾斜方式是 。3)函数在点P处的导数值为3,则函数在点P处的切线的斜率为 ,切线的倾斜方式是 。3、教材P80A组T6、B组T3。五回顾总结1曲线的切线及切线的斜率;2导数的几何意义1.2.1几个常用函数的导数教学目标:1使学生应用由定义求导数的三个步骤推导四种常见函数、的导数公式; 2掌握并能运用这四个公式正确求函数的导数教学重点:四种常见函数、的导数公式及应用教学难点: 四种常见函数、的导数公式教学过程:1函数的导数 根据导数定义,因为= 。

12、所以= 。 = 表示函数图像(图3.2-1)上每一点处的切线的斜率都为 若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为 ,即物体一直处于 状态2函数的导数因为=所以= 表示函数y=x图像(图3.2-1)上每一点处的切线的斜率都为 若y=x表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为 ,即物体一直处于 状态探究:教材P82。3函数的导数因为=所以= 表示函数图像(图3.2-3)上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快若表示路

13、程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为4函数的导数因为=所以= 探究:P82。课堂练习1求函数y=x3的导数。2求函数y=xn的导数。3求函数的导数。回顾总结函数导数布置作业3.2.2基本初等函数的导数公式及导数的运算法则教学目标:1熟练掌握基本初等函数的导数公式; 2掌握导数的四则运算法则;3能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用教学过程:(一)基本初等函数的导数公式表函数导数 (二)导数的运算法则导数运算法则123(2)推论:(常数与函数的积的导数,等于常数乘函数的导数)三典例分析例1假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2根据基本初等函数的导数公式和导数运算法则,求下列函数的导数(1)(2)y ;(3)y x sin x ln x;(4)y ;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论