两自由系统的振动_第1页
两自由系统的振动_第2页
两自由系统的振动_第3页
两自由系统的振动_第4页
两自由系统的振动_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、5-1 如图所示的系统,若运动的初始条件:试求系统对初始条件的响应。题5-1图 题5-2图解: 有两个值 5-2 图示为一带有附于质量m1和m2上的约束弹簧的双摆,采用质量的微小水平平移 x1和x2为坐标,设,试求系统的固有频率和主振型。题5-1图 题5-2图解:设沿方向移动1个单位,保持不动,对,进行受力分析,可得:同理使沿方向移动一个单位,保持不变,对受力分析可得:,;刚度矩阵为,质量距阵,带入可得运动的微分方程为:+=;综上解得:利用刚度影响系数法求刚度矩阵。设,分别画出与的受力图,并施加二物块力,列平衡方程,对:, ,对: , , 设,分别画出与的受力图,并施加二物块力,列平衡方程,对

2、: , , 对: , , 由, 解得,得作用力方程为由方程得到系统的刚度矩阵为=系统的质量矩阵为=由频率方程,得展开为,解出频率为由特征矩阵的伴随矩阵的第一列,并分别代入二频率值,得到二阶振型为,系统的主振型矩阵为5-3 图示的扭振系统由无质量的轴和两个圆盘组成,已知轴段的扭转刚度为kq1及kq2,圆盘的转动惯量为I1、I2,并受到扭矩M1、M2的作用,试写出系统运动的微分方程,并求系统的固有频率和主振型。题5-3图解:取 为广义坐标,它们分别为M1、M2的转角。当=1,=0时,分别表示保持系统该位置平衡,应加在M1、M2的力偶矩,由刚体的平衡条件得当=0,=1时,分别表示保持系统该位置平衡,

3、应加在M1、M2的力偶矩,由刚体的平衡条件得对取任意值时,根据达朗贝尔原理,可得系统的微分方程为即5-4 图示悬臂梁的质量不计,梁的抗弯刚度为EI,设,试写出系统运动的微分方程,并求系统的固有频率和主振型。题5-4图解:取为广义坐标,根据柔度影响系数的定义,表示在处施加单位力(沿方向)在处产生的位移。按材料力学的挠度公式,则有表示在处施加单位力(沿方向)在处产生的位移。有表示在处施加单位力在处产生的位移等于在处施加单位力在处产生的位移。有系统的位移方程即有所求微分方程为 解:系统的质量矩阵M=。首先仅在质量m处施加竖直单位力Q=1,则m产生的位移是:;m产生的位移是:。画出m的受力图,如图(1

4、)。 时,=0,所以=0;,所以=0。时,;以为非常小,所以有,再在上施加单位力,则处产生的位移为,处产生的位移为。画出的受力图如图(2)。时,所以;,所以。时,时,于是可以写出柔度矩阵系统的特征矩阵令,则有 频率方程,得 求出各根 于是得到固有频率 为求系统的主振型,先求 将,分别代入第一列,则各阶主振型为 5-5 如图所示,拉紧的无质量弦上附着两个质量m1与m2,假定质量作横向微振动时弦中拉力FT不变,设,试写出系统运动的微分方程,并求系统的固有频率和主振型。题5-5图解:在竖直方向以m1为坐标原点建立y坐标(正方向竖直向下)。令m1有单位位移=1,而保持不动,分别表示保持系统在该位置平衡

5、,应在施加的力,由刚体的平衡条件得。再令有单位们移=1,同理可得。因此,可得到刚度矩阵可写出系统运动的微分方程为,整理后得解:令=1,=0 =2=2tan=2=(0) 令同理得 图55所以系统运动的微分方程为:解:系统的质量矩阵M=。首先仅在质量m处施加竖直单位力Q=1,则m产生的位移是:;m产生的位移是:。画出m的受力图,如图(1)。由受力平衡得: 同理,受单位力时,得 于是可以写出柔度矩阵系统的特征矩阵令, 则有:频率方程,得求出各根 于是得到固有频率 为求系统的主振型,先求将,分别代入第一列,则各阶主振型为 5-6 图中刚性杆的质量不计,按图示坐标建立微分方程,试求出系统固有频率和主振型

6、。题5-6图解: 当m下降单位长度时,根据系统受力平衡和m所受力矩为零得: 解的同理得系统的质量矩阵和刚度矩阵分别为 由得微分方程 系统的特征矩阵为 由频率方程 得 解得 固有频率为 特征矩阵的伴随矩阵将固有频率值代入,得主振型,或由公式求固有频率和主振型令,则把数据代入以后的结果是:5-7 试求图示系统的固有频率和主振型。已知。题5-7图5-8 刚杆AB长l,质量不计。其一端B铰连接,另一端刚连一质量为m的物体A;其下连接弹簧常量为k的弹簧,并挂有质量为m的物体D,杆AB中点用弹簧常量为k的弹簧拉住,使杆在水平位置平衡,试求系统的固有频率。题5-8图解:x:k;x:k 解得k由0知 =0P解

7、:给杆AB一单位转角,则有,则,所以 对物体D有 ,所以给物体D一单位位移,则对物体D有,得又所以刚度矩阵为所以由即系统的固有频率为5-9 两根相同的重为W的杆,在中简铰支,杆长为2a。两杆的端点以弹簧k和k1联接如图。试求这一系统的固有频率及主振型。题5-9图5-10 一刚性圆盘质量为M,半径为R。圆盘轴心上铰联一根长为l的臂,臂端带有一个质量为m的摆锤,如题5-10图所示。求摆锤自由振动时的固有频率。广义坐标为x1和x2,它们完整地确定了系统的位置,并且对任意约束都是独立的。题5-10图因 令,用拉格朗日方程于是可得到运动方程:令,用拉格朗日方程可得运动方程为假定,就可求解这个运动方程组。因此,可得频率方程可以得到w = 0或且。5-11 题5-11 (a) 图所示两层刚架式框架。各层楼面质量分别为m1=m,m2=2m;各层的侧移刚度(该层柱子上,下两端发生单位相对位移时,该层各柱剪力之和),试分析其自由振动。设横梁变形略去不计。解:(1)求刚度矩阵K和质量矩阵M在各楼层处附加水平链杆,并分别使各层产生一单位位移。由各层的剪力平衡条件,可求得各刚度影响系数,其数值分别如图5-11(b)、(c)所示。得刚度矩阵为(a)质量矩阵为(b)题5-11图(2)频率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论