三相桥式整流电路的设计_第1页
三相桥式整流电路的设计_第2页
三相桥式整流电路的设计_第3页
三相桥式整流电路的设计_第4页
三相桥式整流电路的设计_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目录1 方案设计12 主电路分析及元件的选择22.1 主电路的原理分析22.2 整流变压器的选择32.3 晶闸管的选择42.4 平波电抗器的参数计算53 触发电路的设计63.1 触发电路的作用及要求63.2 触发电路的选择74 保护电路设计114.1 过电压保护电路设计114.2 过电流保护电路设计124.3 缓冲电路的设计125 MATLAB仿真及结果分析145.1 MATLAB建模及仿真145.2 仿真结果及分析14附录17附录18参考文献19三相桥式整流电路的设计1 方案设计整流电路是电力电子电路中出现最早的一种,它将交流电变为直流电,应用广泛。当整流负载容量较大,或要求直流电压脉冲较小

2、时,应采用三相整流电路,其交流测由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。本设计要求整流电路带直流电机负载,希望获得的直流电压脉冲较小,所以用三相全波整流比较合理。三相桥式全控和三相桥式半控是常见的三相桥式可控全波整流电路。三相半控桥式整流电路适用于中等容量的整流装置或不要求可逆的电力拖动中,它采用共阴极的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成,电路兼有可控与不可控两者的特性。共阳极组的三个整流二极管总是在自然换流点换流,使电流换到阴极点为更低的一相中去。该电路在使用中需加设续流二极管,以避免可能发生的失控

3、现象,所以电路不具备逆变能力。虽然三相半控电路相应触发电路较简单,但只能用于整流不能用于逆变,现在很少使用。本设计选择使用三相桥式全控整流电路。整流电路的输入部分是变压器,作用是降低或减少晶闸管变流装置对电网和其它用电设备的干扰,将整流电路与电网隔离,并将电网电压值转变为整流所需输入值。整流部分是六个晶闸管,是由共阴极的三相半波可控整流电路与共阳极接法的三相半波可控整流电路串联而成。为使整流电路能正常工作,除了要给晶闸管配设可靠的触发电路外,还要有保护电路,以防止各种原因产生的过电压和过电流影响或损坏晶闸管。另外,在使用晶闸管整流装置供电时,其供电电压和电流中,含有各种谐波成份。当控制角增大,

4、负载电流减小到一定程度时,还会产生电流断续现象,造成对变流器特性的不利影响。当负载为直流电动机时,由于电流断续和直流电动机的脉动,会使晶闸管导通角减小,整流器等效内阻增大,电动机的机械特性变软,换相条件恶化,并且增加电动机的损耗。因此,需要在直流电路内串接平波电抗器,以限制电流的脉动分量,维持电流连续。2 主电路分析及元件的选择经上述方案确定,主电路主要包括整流变压器、整流电路、触发电路、保护电路、平波电抗器、直流电机几部分。2.1 主电路的原理分析主电路原理图如图1所示,将其中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT

5、2)称为共阳极组。习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。通过调节触发电路的控制电压改变晶闸管的控制角,从而改变输出电压和输出电流对负载进行控制。三相桥式全控整流电路的一些特点如下:1)每个时刻均需两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管是共阴极组的,一个是共阳极组的,且不能为同一相的晶闸管。2)对触发脉冲要求:6个晶闸管的脉冲按VT1VT2VT3VT4VT5VT6的顺序,相位依次差60o;共阴极

6、组VT1、VT3、VT5的脉冲依次差120o,共阳极组VT4、VT6、VT2也依次差120o;同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180o。3)整流输出电压一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。图1 主电路原理图2.2 整流变压器的选择变压器的主要任务就是将整流电路与电网隔离,并把交流电压值匹配成需要的大小。整流电路在接入电网时由于变压器一次侧电压为380V,大于电动机的额定电压,所以选用降压变压器。为得到零线,变压器二次侧必须接成星型,而一次侧接成三角形,这样可以避免三次谐波电流流入电网,减少对电源的干扰。一般记变压器二次

7、侧电压值为,则取大小时需考虑的因素有:(1)值的大小首先要保证满足负载所要求的最大直流平均电压。(2)实际上,晶闸管并非理想的可控开关元件,导通时有一定的管压降。(3)变压器漏抗的存在,导致晶闸管整流装置在换相程中产生换相压降。 (4)整流电路对直流电动机供电时,为保证流过电机的电流连续平滑,一般都需串接足够大电感的平波电抗器。平波电抗器具有一定的直流电阻,当电流流经该电阻时,会产生一定的电压降。(5)当负载电流较大时,电机的端电压除考虑电动机的额定电压外,还需考虑电动机电枢电阻的压降。在最大负载电流时,电机的端电压应为电动机的额定电压和超载电流在电枢电阻上压降之和。可见,考虑电路实际情况后的

8、应该比理想情况下的值大。理想情况下,变压器一次侧相电压为380V,变压器二次侧线电压为交流电压在数值上等于输出的负载上的直流电压,即为直流电机的额定电压220V,所以220V。变压器二次侧相电压计算:(1)取实际二次侧电压值,则变压器的变比:(2)因为负载为直流电动机带电感,所以输出电流平均值波形近似为一条直线,即平均值数值上与有效值相等,故(3)根据三相全控桥变压器二次侧电流的有效值的计算公式:(4)可得,变压器一次侧电流有效值。根据以上算出的数值,可以直接算得变压器初级容量、次级容量和平均计算容量S:(5)(6)(7)2.3 晶闸管的选择合理选择整流晶闸管的主要参数是晶闸管的额定电压和额定

9、电流。选用时,额定电压要留有一定的安全裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的23倍,即(8)其中,为电路中晶闸管可能承受的电压峰值,对于三相全控整流电路:(9)可得:(10)额定电流即通态平均电流,是按照正向电流造成的器件本身的通态损耗的发热效应来定义的。因此在使用时应按照实际波形的电流与通态平均电流所造成的热效应相等,即有效值相等的原则来选取晶闸管的此项电流定额,并留有一定的裕量。一般取其通态平均电流为按此原则所得计算结果的1.52倍。由公式:(11)式中为晶闸管的电流有效值。对三相全控整流电路,流过晶闸管电流的有效值:当,(12)当,(13)若,则(14)将=220V,=1

10、70V代入上式可得,与相矛盾,故,此时:(15)再次代入和,可得。所以可得各晶闸管电流有效值:(16)综上,整流部分选用额定电压,额定电流的晶闸管。2.4 平波电抗器的参数计算对于直流电动机负载的可控整流电路,为了使晶闸管整流供电的直流电动机即使在最轻负载下(),也能工作在电流连续段机械特性的直线上,要求电枢回路的临界电感量为(17)其中,为最小负载时对应的最小电流,一般取电动机额定电流的56,则有:(18)将其代入式(17),可算得平波电抗器电感。3 触发电路的设计3.1 触发电路的作用及要求晶闸管触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小

11、晶闸管触发大晶闸管的触发电路等等。晶闸管最重要的特性是可控的正向导通特性。当晶闸管的阳极加上正向电压后,还必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能导通。这一正向触发电压是由触发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用脉冲触发。触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉。晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提供的数据,但也不能太大,以免损坏其控制极。在有晶闸管串并联的场合,触发脉冲的前沿越陡越有利于晶闸管的同时触发导通。为了保证

12、晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:(1)触发信号要有足够的功率为使晶闸管可靠触发,触发电路提供的触发电压和触发电流必须大于晶闸管产品参数提供的门极触发电压与触发电流值,即必须保证具有足够的触发功率。同时,触发信号也不许超过规定的门极最大允许峰值电压与峰值电流,以免坏晶闸管的门极。在触发信号为脉冲形式时,只要触发功率不超过规定值,允许触发电压或触发电流的幅值在短时间内大大超过铭牌规定值。(2)触发脉冲必须与主回路电源电压保持同步为了保证电路的品质及可靠性,要求晶闸管在每个周期都在相同的相位上触发。因此,晶闸管的触发电压必须与其主回路的电源电压保持固定的相位关系,即实现同步。

13、实现同步的办法通常是选择触发电路的同步电压,使其与晶闸管主电压之间满足一定的相位关系。(3)触发脉冲要有一定的宽度和前沿陡度为使被触发的晶闸管能保持住导通状态,晶闸管的阳极电流在触发脉冲消失前必须达到擎住电流,此触发脉冲应具有一定的宽度,不能过窄。特别地,负载为电感性负载时,电路中电流不能突变,更需要较宽的触发脉冲,才可使元件可靠导通。此外,很多晶闸管电路还要求触发脉冲具有陡的前沿,以实现精确的触发导通控制。(4)触发电路要与主电路保持同步三相桥式半控整流电路的触发电路必须将晶闸管的触发电路与主电路相结合,使触发脉冲与主电路的相位同步。触发电路除了应当保证工作频率与主电路交流电源的频率一致外,

14、还应该保证每个晶闸管的触发脉冲与施加于晶闸管的交流电压保持固定、正确的相位关系,称为触发电路的定相。为保证触发电路和主电路频率一致,利用一个同步变压器,将其一次侧接入为主电路的电网,由其二次侧提供同步电压信号。这样,由同步电压决定的触发脉冲频率与主电路晶闸管电压频率始终使一致的。触发电路的定相由多方面的因素确定,主要包括相控电路的主电路结构、触发电路结构等。触发电路定相的关键是确定同步信号与晶闸管阳极电压的关系。(5)触发脉冲的移相范围应能满足主电路的要求触发脉冲的移相范围取决于主电路的特点、负载性质及整流电路的用途。例如,单相全控桥电阻负载要求触发脉冲移相范围为,而电感性负载时的移相范围为。

15、3.2 触发电路的选择图2是同步信号为锯齿波的触发电路。此电路输出可为单窄脉冲,也可以为双窄脉冲,以适用于有两个晶闸管同时导通的电路,例如三相全控桥。电路分为三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移项、同步环节。其中,脉冲形成环节由晶体管、组成,、起脉冲放大作用。锯齿波电压形成采用恒流源电路方案,由、和等元件组成,、和为一恒流源电路。同步环节是由同步变压器TS和作用同步开关用的晶体管组成的,同步变压器和整流变压器接在同一电源上,用同步变压器的二次电压来控制的通断作用,从而保证了处罚脉冲和主电路同步。随着集成电路制作技术的提高,晶闸管触发电路的集成化已逐渐普及。集成晶闸管触发电路可靠

16、性高,技术性能好,体积小,功耗低,调试方便。目前国内常用的晶闸管触发电路有KJ系列和KC系列。图2 同步信号为锯齿波的触发电路图3 KJ004内部电路原理图图3为KJ004内部电路原理图,从图中可以看出,它与分立元件的锯齿波移项触发电路相似。可分为同步、锯齿波形成、移项、脉冲形成、脉冲分选及脉冲放大几个环节。用3个KJ004集成块和一个KJ041集成块即可生成六路双脉冲,再由六个晶体管进行放大,即构成完整的三相全控桥触发电路如图4所示。图4 三相全控桥整流电路的集成触发电路以上的触发电路均为模拟量的,其优点是结构简单、可靠,缺点是易受电网电压影响,触发脉冲的不对称度较高。TC787触发块也可以

17、提供完全独立的六路触发脉冲,它主要适用于三相可控硅移相触发电路和三相三极管脉宽调制电路,以构成多种调压调速和变流装置,具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽,外接元件少等优点;而且装调简便,使用可靠。只需要一块这样的集成电路,就可实现三相桥式全控整流的三相移相。它总共有18只管脚,管脚排列示意图如图5所示。 图5 TC787管脚图图6 TC787内部结构图TC787由三路相同的部分:同步过零和极性检测、锯齿波形成、锯齿波比较,经过抗干扰锁定、脉冲形成等电路形成三相触发调制脉冲或方波,由脉冲分配电路实现全控、半控的工作方式,再由驱动电路完成输出驱动,其内部结构图如图6所示,各管

18、脚功能见附录。三相同步电压经过T型网络进入电路,同步电压的零点设计为1/2电源电压,通过过零检测和极性判别电路检测出零点和极性后,在Ca、Cb、Cc三个电容上积分形成锯齿波。由于采用集中式恒流源,相对误差极小,锯齿波有良好的线性。锯齿波在比较器中与移相电压比较取得交相点,移相电压由4脚通过电位器或外电路调节而取得。抗干扰电路具有锁定功能,在交相点以后锯齿波或移相电压的波动将不能影响输出,保证交相唯一并且稳定。脉冲分配及驱动电路是由6脚控制脉冲分配的输出方式。5脚为保护端,当系统出现过流过压时,将5脚置高电平VH,输出脉冲即被禁止。5脚还可以用作过零触发系统的控制端,输出端可驱动功率管,经脉冲变

19、压器触发可控硅;也可直接驱动光电耦合器,经隔离触发可控硅或驱动三级管。本设计选用TC787作为驱动电路单元。4 保护电路设计在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计良好外,采用合适的过电压保护、过电流保护、保护和保护也是很重要的。4.1 过电压保护电路设计电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。外因过电压主要来自雷击哈系统中的操作过程等外部原因,包括操作过电压、雷击过电压;内因过电压主要来自电力电子装置内部器件的开关过程,包括换项过电压和关断过电压。交流侧过电压一般都是外因过电压,一般用RC过电压抑制电路抑制外因过电压。通常是在变压器次级(元件侧)并联

20、RC电路,吸收变压器铁心的磁场释放的能量,并把它转化为电容器的电场能而储存起来。串联电阻是为了在能量转换过程中可以消耗一部分能量并且抑制LC回路可能产生的振荡。当整流器容量较大时,RC电路也可以接在变压器的电源侧。其电路图如图4所示。图7 阻容过电压保护电路直流侧过电压保护也可采用上述方法,考虑到RC会影响系统的反应速度,并且会增大,一般不采用阻容保护,而只用压敏电阻作过电压保护,如图7所示:图8 压敏电阻保护电路晶闸管两端可能的过电压发生在关断或者换项过程中,可以直接将RC并联在晶闸管两端进行保护,电路图如下:图9 压敏电阻保护电路4.2 过电流保护电路设计电力电子电路运行不正常或者发生故障

21、时,可能会发生过电流。过电流分为过载和短路两种情况。一般电力电子装置均同时采用几种过电流保护措施,以提高保护的可靠性和合理性。通常,电子电路作为第一保护措施,快速熔断器仅作为短路时的部分区段的保护,过电流继电器整定在过载是动作。采用快速熔断器是电力电子装置中最有效应、应用最广泛的一种过电流保护措施。本设计采用快速熔断器来实现晶闸管过电流保护。4.3 缓冲电路的设计缓冲电路又称吸收电路,其作用是抑制电力电子器件的内因过电压、或者过电流和,减小器件的开关损耗。缓冲电路可分为关断缓冲电路和开通缓冲电路。关断缓冲电路又称为抑制电路,用于抑制器件开通时的电流过冲和,减小器件的开通损耗,可将关断缓冲电路和

22、开通电路结合在一起,称为复合缓冲电路。还有另外一中分类方式:缓冲电路中储能元件的能量如果能消耗在吸收电阻上,则称其为馈能式缓冲电路或无损吸收电路。产生过大的可能原因有:在晶闸管换相过程中交流侧线电压相当于短路,交流侧阻容保护的电容放电造成过大;换相时因直流侧整流电压突然增高,对阻容保护电容进行充电造成过大。限制的措施主要有:1、在晶闸管阳极回路串入电感;2、采用整流式阻容吸收装置;本设计采用的是第一种方法。图10 抑制电路对于带有整流变压器和交流侧阻容保护的交流装置,因变压器漏电感和交流侧RC吸收电路组成了滤波环节,使由交流电网入侵的前沿陡、幅值大的过电压有较大衰减,并使作用于晶闸管的正向电压

23、上升率大为减小。在无整流变压器供电的情况下,则应在电源输入端串联在数值上相当于变压器漏感的进线电感以抑制,并起到限制短路电流的作用。图10所示的缓冲电路被称为充放电型RCD缓冲电路,适用于中等的容量的场合。综合以上所有电路,可得系统总电路图见附录。5 MATLAB仿真及结果分析根据上述电路图及已知电机参数仿真电机额定负载时的工作情况,获得电路参数及相关波形,以验证设计的正确性。5.1 MATLAB建模及仿真由电机与拖动基础知识及已知电机参数,可计算仿真电路数据如下:(19)可得额定负载转矩:(20)按图11在MATLAB中布局元件并连接电路图,设置好相关属性参数。图11 三相桥式全控整流电路仿真电路图5.2 仿真结果及分析完成上述建模之后,改写触发角的大小即可分别得到=0o,60o,90o时的负载电压、负载电流、晶闸管端电压及触发信号的波形如下:图12 =0o时的输出波形图13 =60o时的输出波形图14 =90o时的输出波形由波形图可以看出,仿真所用的驱动模块释放的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论