初二上册数学期中复习资料指导_第1页
初二上册数学期中复习资料指导_第2页
初二上册数学期中复习资料指导_第3页
初二上册数学期中复习资料指导_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.初二上册数学期中复习资料指导间隔 期中考试越来越近了,半学期即将完毕,各位同学们都进入了紧张的复习阶段,对于初二学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇初二上册数学期中复习资料吧!一运用公式法:我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=a+ba-ba2+2ab+b2=a+b2a2-2ab+b2=a-b2假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。二平方差公式1.平方差公式1式子: a2-b2=a+ba-b2语言:两个数的平方差,等于这两个数的和与这两个数的差

2、的积。这个公式就是平方差公式。三因式分解1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。2.因式分解,必须进展到每一个多项式因式不能再分解为止。四完全平方公式1把乘法公式a+b2=a2+2ab+b2 和 a-b2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =a+b2a2-2ab+b2 =a-b2这就是说,两个数的平方和,加上或者减去这两个数的积的2倍,等于这两个数的和或者差的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。2完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号一样。有一项为哪一项这两

3、个数的积的两倍。3当多项式中有公因式时,应该先提出公因式,再用公式分解。4完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。5分解因式,必须分解到每一个多项式因式都不能再分解为止。五分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.假如我们把它分成两组am+ an和bm+ bn,这两组能分别用提取公因式的方法分别分解因式.原式=am +an+bm+ bn=am+ n+bm +n做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式m+n,因此还能

4、继续分解,所以原式=am +an+bm+ bn=am+ n+bm+ n=m +na +b.这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好一样,那么这个多项式就可以用分组分解法来分解因式.六提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的构造特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进展适当的变形,或改变符号,直到可确定多项式的公因式.2. 运

5、用公式x2 +p+qx+pq=x+qx+p进展因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的屡次尝试,一般步骤:要练说,得练听。听是说的前提,听得准确,才有条件正确模拟,才能不断地掌握高一级程度的语言。我在教学中,注意听说结合,训练幼儿听的才能,课堂上,我特别重视老师的语言,我对幼儿说话,注意声音清楚,上下起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种兴趣活动,培

6、养幼儿边听边记,边听边想,边听边说的才能,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的才能,强化了记忆,又开展了思维,为说打下了根底。 列出常数项分解成两个因数的积各种可能情况;其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记之后会“活用。不记住那些根底知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正进步学生的写作程度,单靠分析文章的写作技巧是远远不够的,必须从根底知识抓起,每天挤一点时间让学生“死记名篇佳句、名言警句,以及丰富的词语、新颖的材料

7、等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的成效。尝试其中的哪两个因数的和恰好等于一次项系数.唐宋或更早之前,针对“经学“律学“算学和“书学各科目,其相应传授者称为“博士,这与当今“博士含义已经相去甚远。而对那些特别讲授“武事或讲解“经籍者,又称“讲师。“教授和“助教均原为学官称谓。前者始于宋,乃“宗学“律学“医学“武学等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教在古代不仅要作入流的学问,其教书育人的职责也十清楚晰。唐代国子学、太学等所设之“助教一席,也是当朝打眼的学官。至明清两代,只设国子监国子学一科的“助教,其身价不谓显赫,也称得上朝廷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论