立体几何中几类典型问题的向量解法_第1页
立体几何中几类典型问题的向量解法_第2页
立体几何中几类典型问题的向量解法_第3页
立体几何中几类典型问题的向量解法_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。一、 利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离 (1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点与平面内任一点构成的向量的坐标,那么到平面

2、的距离 (2)求两点之间距离,可转化求向量的模。 (3)求点到直线的距离,可在上取一点,令或的最小值求得参数,以确定的位置,则为点到直线的距离。还可以在上任取一点先求,再转化为,则为点到直线的距离。(4)求两条异面直线之间距离,可设与公垂线段平行的向量,分别是上的任意两点,则之间距离例1:设,求点到平面的距离解:设平面的法向量,所以,所以设到平面的距离为,例2:如图,正方形、的边长都是1,而且平面、互相垂直。点在上移动,点在上移动,若。A(O)BDCxEFNMyz()求的长;()当为何值时,的长最小;()当长最小时,求面与面所成的二面角的大小解:建立如图所示空间直角坐标系(2)由得(3)又所以

3、可求得平面与平面的法向量分别为,所以,所以zABCDMNxyzzzz例3:正方体的棱长为1,求异面直线与间的距离解:如图建立坐标系,则,设是直线与的公垂线,且则,二、利用向量知识求线线角,线面角,二面角的大小。(1)设是两条异面直线,是上的任意两点,是直线上的任意两点,则所成的角为 (2)设是平面的斜线,且是斜线在平面内的射影,则斜线与平面所成的角为。设是平面的法向量,是平面的一条斜线,则与平面所成的角为。(3)设是二面角的面的法向量,则就是二面角的平面角或补角的大小。例4:在棱长为的正方体中,分别是的中点,ABCDEFGxyz(1)求直线所成角;(2)求直线与平面所成的角,(3)求平面与平面

4、所成的角解:(1)如图建立坐标系,则,,故所成的角为(2)所以在平面内的射影在的平分线上,又为菱形,为的平分线,故直线与平面所成的角为,建立如图所示坐标系,则, 故与平面所成角为由所以平面的法向量为下面求平面的法向量,设,由,所以平面与平面所成的角点评:(1)设是两条异面直线,是上的任意两点,是直线上的任意两点,则所成的角为 (2)设是平面的斜线,且是斜线在平面内的射影,则斜线与平面所成的角为。(3)设是二面角的面的法向量,则就是二面角的平面角或补角的大小。例5:如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD,E,F分别CD、PB的中点. ABCDEFxyzP()求证:EF平面P

5、AB;()设AB=BC,求AC与平面AEF所成角的大小. ()证明:建立空间直角坐标系(如图),设AD=PD=1,AB=(),则E(a,0,0), C(2a,0,0), A(0,1,0), B(2a,1,0), P(0,0,1), .得,. 由,得,即, 同理,又, 所以,EF平面PAB. ()解:由,得,即.得,. 有,. 设平面AEF的法向量为,由,解得. 于是. 设AC与面AEF所成的角为,与的夹角为. 则. 得. 所以,AC与平面AEF所成角的大小为. SBACDzxy点评:设是平面的法向量,是平面的一条斜线,则与平面所成的角为。例6:如图,在底面是直角梯形的四棱锥S-ABCD中,AB

6、C = 90°,SA面ABCD,SA = AB = BC = 1,求面SCD与面SBA所成的二面角的正切值 解:如图建立直角坐标系,则,所以是平面的一个法向量。设平面的一个法向量由,令,平面与平面所成的二面角的正切值为点评:用向量知识求二面角的大小时,是将二面角的问题转化为两平面的法向量的夹角问题,(1)当法向量的方向分别指向二面角内侧与外侧时,二面角的大小等于法向量的夹角的大小。(2)当法向量的方向同时指向二面角的内侧或外侧时,二面角的大小等于法向量的夹角的补角。三、利用向量知识解决平行与垂直问题。例7:如图, 在直三棱柱ABCA1B1C1中,AC3,BC4,AA14,,点D是AB的中点, (I)求证:ACBC1; (II)求证:A1C /平面CDB1;解:直三棱柱ABCA1B1C1底面三边长AC3,BC4,AB5,AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)(3,0,0),(0,4,0),0,ACBC1.(2)设CB1与C1B的交战为E,则E(0,2,2).(,0,2),(3,0,4),DEAC1. DE平面CDB1,AC1平面CDB1, AC1/平面CDB1;点评:转化转化平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论