春电大经济数学基础形成性考核册及参考答案_第1页
春电大经济数学基础形成性考核册及参考答案_第2页
春电大经济数学基础形成性考核册及参考答案_第3页
春电大经济数学基础形成性考核册及参考答案_第4页
春电大经济数学基础形成性考核册及参考答案_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、春电大经济数学基础形成性考核册及参考答案作业()(一)填空题.答案:.设,在处连续,则.答案:.曲线在的切线方程是 .答案:.设函数,则.答案:.设,则.答案:(二)单项选择题. 函数的连续区间是( )答案: 或 . 下列极限计算正确的是( )答案:. 设,则( )答案: . 若函数 ()在点处可导,则( )是错误的答案: 函数 ()在点处有定义 ,但 函数 ()在点处连续 函数 ()在点处可微 .当时,下列变量是无穷小量的是( ). 答案:(三)解答题计算极限设函数,问:()当为何值时,在处有极限存在?()当为何值时,在处连续.答案:()当,任意时,在处有极限存在;()当时,在处连续。计算下

2、列函数的导数或微分:(),求答案:(),求答案:(),求答案: (),求答案:(),求答案:(),求答案:(),求答案:(),求答案:(),求答案:(),求答案:.下列各方程中是的隐函数,试求或(),求答案:解:方程两边关于求导:(),求答案:解:方程两边关于求导求下列函数的二阶导数:(),求答案:(),求及答案:,作业()(一)填空题.若,则.答案:. .答案:. 若,则 .答案:.设函数.答案:. 若,则.答案:(二)单项选择题. 下列函数中,( )是的原函数 答案: . 下列等式成立的是( ) 答案:. 下列不定积分中,常用分部积分法计算的是( ) 答案:. 下列定积分计算正确的是( )

3、 答案:. 下列无穷积分中收敛的是( ) 答案:(三)解答题.计算下列不定积分答案: 答案:答案:答案:答案:答案:答案:答案:.计算下列定积分答案:答案:答案:(答案:答案:答案:作业(一)填空题.设矩阵,则的元素.答案:.设均为阶矩阵,且,则. 答案:. 设均为阶矩阵,则等式成立的充分必要条件是 .答案:. 设均为阶矩阵,可逆,则矩阵的解.答案:. 设矩阵,则.答案:(二)单项选择题. 以下结论或等式正确的是( ) 若均为零矩阵,则有若,且,则 对角矩阵是对称矩阵 若,则答案. 设为矩阵,为矩阵,且乘积矩阵有意义,则为( )矩阵 答案. 设均为阶可逆矩阵,则下列等式成立的是( ) 答案.

4、下列矩阵可逆的是( ) 答案. 矩阵的秩是( ) 答案三、解答题计算计算解 设矩阵,求。解 因为所以设矩阵,确定的值,使最小。答案:当时,达到最小值。求矩阵的秩。答案:。求下列矩阵的逆矩阵:答案 答案 设矩阵,求解矩阵方程答案: 四、证明题试证:若都与可交换,则,也与可交换。证明:,试证:对于任意方阵,是对称矩阵。提示:证明,设均为阶对称矩阵,则对称的充分必要条件是:。提示:充分性:证明:因为 必要性:证明:因为对称,所以设为阶对称矩阵,为阶可逆矩阵,且,证明是对称矩阵。证明:作业(四)(一)填空题.函数在区间内是单调减少的.答案:. 函数的驻点是,极值点是 ,它是极 值点.答案:,小.设某商

5、品的需求函数为,则需求弹性 .答案:.行列式.答案:. 设线性方程组,且,则时,方程组有唯一解.答案:(二)单项选择题. 下列函数在指定区间上单调增加的是( ) 答案:. 已知需求函数,当时,需求弹性为( ) 答案:. 下列积分计算正确的是( ) 答案:. 设线性方程组有无穷多解的充分必要条件是( )答案:. 设线性方程组,则方程组有解的充分必要条件是( ) 答案:三、解答题求解下列可分离变量的微分方程:答案: 答案: . 求解下列一阶线性微分方程:答案:,代入公式锝 答案: ,代入公式锝.求解下列微分方程的初值问题:答案: ,把代入,答案:,代入公式锝,把代入, , .求解下列线性方程组的一

6、般解:答案:(其中是自由未知量)所以,方程的一般解为(其中是自由未知量)答案:(其中是自由未知量).当为何值时,线性方程组有解,并求一般解。答案: .当有解,(其中是自由未知量)为何值时,方程组答案:当且时,方程组无解;当时,方程组有唯一解;当且时,方程组无穷多解。求解下列经济应用问题:()设生产某种产品个单位时的成本函数为:(万元),求:当时的总成本、平均成本与边际成本;当产量为多少时,平均成本最小?答案:(万元) , (万元单位),(万元单位),当产量为个单位时可使平均成本达到最低。().某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元件),问产量为多少时可使利润达到最大?最大利润是多少答案: () , ,当产量为个单位时可使利润达到最大,且最大利润为(元)。()投产某产品的固定成本为(万元),且边际成本为(万元百台)试求产量由百台增至百台时总成本的增量,及产量为多少时,可使平均成本达到最低解:当产量由百台增至百台时,总成本的增量为答案: (万元) , 当(百台)时可使平均成本达到最低.()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论