高中数学竞赛培训专题讲座不等式_第1页
高中数学竞赛培训专题讲座不等式_第2页
高中数学竞赛培训专题讲座不等式_第3页
高中数学竞赛培训专题讲座不等式_第4页
高中数学竞赛培训专题讲座不等式_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学竞赛培训专题讲座:重要不等式(一)一基础知识(1) 均值不等式设是个正实数,记,分别称为这个正数的调和平均,几何平均,算术平均和平方平均,则 ,等号成立当且仅当.特别地, (当且仅当时取等号); ,;.(2) Cauchy 不等式设 ,则 ,当且仅当或存在一个常数,使得时,等号成立.推论1:设 ,则 ;推论2:设,则.二例题精讲1已知都是正数.求证:.2. 若,证明:(1);(2) .3. 设为正实数,求证:.4. 已知为正实数,若,求证:.(2008全国高中数学联赛江苏省复赛试题)5. 求证:数列是单调递增数列.6. 设都是正数,证明:.7.设证明:8. 已知,.求证:.9.设是正实

2、数,且满足.证明:.10.设,.求证:.11. 设,证明:.12.已知实数满足,.求的最大值.13.设是一列互不相同的正整数,求证:.(第二十届IMO试题)14. 设为正数,且,又 证明:.15. 设实数是正数.求证:思考题1.求函数在上的最大值.2. 已知,.求证:.(2009年清华大学自主招生试题)3. 已知,关于的方程有一个实根,求的最小值.4. 设为正数,且 ,求证:. (2008年南开大学自主招生试题)5. 已知,求证:(华约自主招生试题)6. 若正数满足,求证:.7.设.求证:. (2014年北约自主招生试题)8. 设都为正数,且.求证:.9.设,且.求证:.10.已知都是正数,.证明:.(1976年英国数学奥林匹克试题)11.求证:数列是单调递减数列.12.设,证明:.(2003年全国高中数学联赛试题)13. 设是的一个排列.求证:.(2002年女子数学奥林匹克试题)14.设,且.求证:15. 已知实数均为正数且满足 求证:16. 设是整数.证明:.1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论