版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 圆锥曲线教案 抛物线的几何性质教案 教学目标1引导学生运用对比(同椭圆、双曲线)和类比(抛物线之间)的思想得到抛物线的几何性质2使学生初步掌握有关抛物线问题的解题方法,培养学生严谨、周密的思考问题的能力及抽象概括能力3通过对抛物线几何性质的探索,强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心教学重点与难点得出抛物线几何性质的思维过程,掌握运用抛物线的几何性质去解决问题的方法教学过程一、复习提问师:我们已经学习了椭圆及双曲线的几何性质,请同学们回忆一下,是从哪几个方面研究的?生:研究了范围、对称性、顶点、离心率、渐近线几个问题师:在研究几何性质时,对曲线的
2、方程有无限制?生:是在曲线的标准方程条件下研究的(说明:课前印发如下表格,请同学填出椭圆、双曲线几何性质在课上引导学生对比看,联想抛物线y2=2px的几何性质,再“类比看”填出y2=-2px及x2=±2py的几何性质) 椭圆双曲线抛物线 标准方程1(a>b>0)1(a>b>0)=1(a>0,b>0)=1(a>0,b>0)y2=2px(p>0) 图象 范围
3、160; 对称性 顶点 离心率 渐近线 二、类比椭圆、双曲线得出抛物线的几何性质师:请同学们拿出课前发的表,你是怎样与椭圆、双曲线的几何性质相比较而得出抛物线的几何性质?(说明:同学们讨论)师:对于方程y2=2px所示抛物线的范围,你是如何得出的?生:由p0可知,x的取值范围是x0,所以抛物线在y轴的右侧师:当x的值增大时,图象是如何变化的?生:当x的值增大时,|y|也增大,说明抛物线向右上方
4、和右下方无限延伸师:由方程y2=2px,观察所表示的图象是对称图形吗?为什么?生:当以-y代y,方程y2=2px值不变,所以此抛物线关于x轴对称,即抛物线y2=2px的对称轴是x轴师:什么叫曲线的顶点?生:曲线与坐标轴的交点叫曲线的顶点师:抛物线y2=2px的顶点在什么位置?为什么?生:在方程y2=2px中,当x=0时,y=0,所以顶点在坐标原点师:(强调)在一个特殊位置师:抛物线y2=2px的离心率如何得到?生:由抛物线定义可知,离心率e=1师:与椭圆、双曲线的几何性质相比较,抛物线的几何性质又有何区别(说明:让学生观察图象,总结特征)师:从抛物线位置上看生:抛物线的图象只位于半个坐标平面内
5、师:有无渐近线?生:尽管抛物线也可以无限延伸,但没有渐近线生:(发现)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线又有学生指出,这条对称轴同顶点和焦点的连线重合师:很好!两种说法同样正确,只是从不同的角度观察问题得到的,结论是一致的(鼓励学生继续观察)生:抛物线只有一个顶点,它是焦点到准线距离的中点生:抛物线无中心师:小结同学们讨论得很好,抛物线的其它标准方程y2=-2px,x2=2py,x2=-2py也有类似的结论,它们的顶点都在坐标原点,一次项的变量如为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项的系数的符号决定抛物线的开口方向,正号决定开口方向和对称轴所在坐标轴的方向相同,
6、负号决定开口方向和对称轴所在坐标轴方向相反(说明:请同学们完成填表)师:在抛物线方程中,参数p对图象有何影响?我们不妨看抛物线(计算机演示描点法作出以上3个图象)(如图2-53)学生可直观看到p值越大,抛物线开口也越大理由,对于同一个x值,它们对应的y值不同,p值大,|y|也大三、应用抛物线的几何性质,进一步探寻其特征例1 用计算机打出(或投影仪打出)抛物线y2=2px的图象,且有一条过焦点垂直于对称轴的弦(如图2-54)生:这条弦很特殊师:抛物线中过焦点且垂直于对称轴的弦,叫抛物线的通径能否知道它的长度?生:(很快发现)这条通径的长为2p师:(追问)你是怎样得到的?生:分别过点A
7、、B作准线l的垂线,垂足分别为D、C(可由计算机演示出,或在投影片中画出)由抛物线定义知|AF|=|AD|=p,|BF|=|BC|=p,所以|AB|AF|+|BF|2p另有学生用不同方法:因为A、B两点在抛物线上,又|AB|=|y1-y2|2p师:小结两种不同的方法,方法一用抛物线定义得出,较简捷方法二由解析法得出,这种解题思想很好师:引导学生观察,由方法一在图中看到,得到矩形ABCD(如图2-55)生:(反应出)这个矩形是由两个正方形AFED、BFEC组成的师:(表扬学生善于观察问题,发现问题,继而再将问题引申)连结DF、CF后,DFC=?师:很好(鼓励学生大胆探索,再将问题引申计算机演示图
8、形变化,AB过点F但与x轴斜交,引出例2)例2 过焦点的弦AB不垂直于对称轴,此时可得到什么图形?DFC=?生:分别过点A、B作准线的垂线,垂足为D、C,得到直角梯形ABCD(如图2-56)(学生讨论)由抛物线定义可知:|AF|=|AD|,|BF|=|BC|,所以1=2,3=4,又知ADEF,BCEF,所以2=5,6=4,所以1=5,3=6,所以2(5+6)=180°,所以5+6=90°,即DFC90°师:小结:若AB为抛物线y2=2px的一条过焦点F的弦,A,B在此时,学生对抛物线的问题很感兴趣,激发起学生探索的欲望教师借题发挥,继续引导,发现新问题
9、师:同学们再想一想例3 当抛物线的焦点弦与对称轴垂直时,它的长度为2p当它与对称轴不垂直时,它与对称轴的夹角为,此时焦点弦长如何?(计算机演示图形,如图2-57)师生讨论用解析法利用弦长公式求设抛物线方程为y2=2px(p0),则焦点弦所在直线方程为:设过焦点的弦与抛物线交于A(x1,y1),B(x2,y2)两点,则(2p为抛物线y2=2px(p0)的通径长)师:由此得到结论若抛物线过焦点的弦与对称轴的夹角为,通为_练习2抛物线y2=12x中,一条焦点弦的长为16,则此焦点弦所在直线的倾角为_说明将此结果作为经验型结论可直接用于填选题,加快解题速度,但作为证明题时不可直接用此结论师
10、:请同学们继续观察下题例4 抛物线y2=2px(p0)上任意一点P(x0,y0)到焦点F的距离|PF|=?师:与椭圆、双曲线相对照,这实质是抛物线的焦半径公式例5 过抛物线y2=2px(p0)的焦点的弦与抛物线交于两点A(x1,y1),B(x2,y2),则y1y2=?设过F的直线为AB(注意此时应分类讨论)(1)当弦AB斜率k存在ky2-2py-kp2=0方程的两根y1,y2分别为A、B两点的纵坐标,由根与系数的关系得y1·y2=-p2(2)当弦AB斜率不存在时,ABy轴由抛物线定义知,y1=-y2=p,所以y1·y2=-p2综上可知:y1·
11、;y2=-p2此题有学生想出了另外的方法由A、F、B三点共线知因为y1y2,所以y1·y2=-p2师:我们不仅要知道问题的结论,更要体会得到结论的过程所用的方法(说明此时课堂气氛活跃,教师继续激发学生的兴趣,表扬学生有积极探索问题的勇气)例6 以抛物线y2=2px(p0)的焦点弦为直径的圆与它的准线有何关系?(学生一时看不出来)师:(引导)探索问题的思路往往从特殊到一般,此问题的实质是直线与圆的位置关系特殊情况应是相切生:(立即受到启发)猜想以焦点弦为直径的圆与它的准线相切师:如何证相切?生:只要证出AB的中点到准线l的距离等于AB长的一半(请学生证明)取AB的中点M,过
12、点M作MMl于M,分别过点A、B作准线l的垂线,垂足分别为A,B,则M为AB中点,(如图2-58)所以,以焦点弦为直径的圆与它的准线相切另有学生有不同的证法设A、B及AB中点M的横坐标分别为x1和x2,xm,由抛物线定义知|AB|=|AF|+|BF|=|AA|+|BB|=|x1+x2+p|(教师表扬学生积极思考问题,善于以不同角度去分析问题解决问题)师:抛物线问题有它的实际应用价值例7 探照灯反射镜的纵断面是抛物线的一部分,灯口直径是60cm,灯深40cm,求抛物线的标准方程和焦点的位置师:在什么条件下,可求抛物线的标准方程生:适当建立平面直角坐标系师生讨论,在纵断面内,以反射镜的
13、顶点(即抛物线的顶点)为坐标原点,过顶点垂直于灯口直径的直线为x轴,建立平面直角坐标系(计算机演示建立坐标系的过程,如图2-59)师:在直角坐标系中,已知条件中灯口直径是60cm,灯深40cm,表示什么位置?生:如图2-59,(AB为灯口的直径),按照灯反射镜的灯口直径在图中是垂直于对称轴的弦AB,则A点的坐标为(40,30)师:由已知条件及在建立的坐标系下,如何求抛物线的标准方程?生:设抛物线的标准方程是y2=2px(p0)只须求出p,而由点A(40,30)在抛物线上这一条件,很容易求出p师:分析得很好(与学生一起完整写出解题过程)解 在纵断面内,以反射镜的顶点(即抛物线的顶点)
14、为坐标原点,过顶点垂直于灯口直径的直线为x轴,建立直角坐标系,如图2-60(计算机演示)设抛物线的标准方程是y2=2px(p0),因为,点A(40,30)在抛物线上,师:小结由已知条件求抛物线的标准方程时,首先要建立适当的平面直角坐标系,再根据所具备的条件确定抛物线的标准方程的类型,求出方程中的参数p四、小结(师生共同完成)1类比椭圆、双曲线的几何性质,得出了抛物线的几何性质(回顾所填的表)2探索了抛物线的其它特性,在探寻的过程中运用了抛物线的定义及几何性质3在解题过程中,特别注意合理运用分类讨论,化归的数学思想五、布置作业第98页练习及习题八设计说明(一)本节课依据高中数学大纲培养学生的能力
15、二次曲线是平面解析几何的主要研究对象,在教学时,注意挖掘它们之间的内在联系和区别,不要孤立地和静止地看待抛物线因此在研究抛物线的几何性质时采用对比的方法进行教学,让学生对照椭圆、双曲线的几何性质,去探求抛物线的几何性质,在进行对比时,要注意横向和纵向两种对比,也就是既要注意每种曲线内部的对比,同时也要注意几种曲线之间的对比(二)在课堂教学中,引导学生积极探索问题本节课引导与组织学生,研究抛物线的几何性质,而抛物线几何性质的研究项目、方法和结果同椭圆、双曲线很类似学生很自然地用类比的方法填充给出的表,不仅可以使3种圆锥曲线的性质得到对比,而且可以提高学生对新知识的探索能力在授课方式上,教师精心设计提问,以便引导学生去探索,去创新富有艺术性的提问,能启迪学生思维,发展学生智力和培养学生能力而问题的设置要从学生的实际出发,能被学生所接受,又要富有启发性,能激发学生的学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 触电急救课件
- 苏教版江苏省南京市2023-2024学年高二上学期期末模拟数学试题
- 环境问题 课件
- 贝壳课件席慕蓉
- 第四讲 有趣的动物(看图写话教学)-二年级语文上册(统编版)
- 自然拼读课件
- 意大利地图课件
- 西京学院《语言程序设计》2022-2023学年期末试卷
- 西京学院《数字化与网络化制造》2021-2022学年期末试卷
- 译林牛津英语7年级上册7AUnit3ReadingⅡ
- TD-T 1041-2013 土地整治工程质量检验与评定规程
- 文化差异与跨文化交际知到章节答案智慧树2023年郑州大学
- 基恩士FS-N18N放大器常用调试说明书
- 保洁人员排班表
- 2023年安徽省交通控股集团招聘笔试题库及答案解析
- 领导在班组长会上的讲话(5篇)
- LY/T 1956-2011县级林地保护利用规划编制技术规程
- GB/T 30842-2014高压试验室电磁屏蔽效能要求与测量方法
- GB/T 20399-2006自然保护区总体规划技术规程
- 简单折纸笔筒制作
- 九年级化学上册复习课件(1-7单元)(2)第五单元复习课件
评论
0/150
提交评论