




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载2016八年级数学上册知识点总结(北师大版)第一章勾股定理1、勾股定理直角三角形两直角边 a, b的平方和等于斜边 c的平方,即a2 +b2 =c22、勾股定理的逆定理如果三角形的三边长 a, b, c有关系a2 +b2 = c2,那么这个三角形是直角三角形。2. 223、勾股数:满足a +b =c的三个正整数,称为勾股数。第二章实数一、实数的概念及分类1、实数的分类正有理数 有理数< 零有限小数和无限循环小数实数y匚负有理数j正无理数 1I无理数T卜无限不循环小数L负无理数 2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四
2、类:(1)开方开不尽的数,如 "V2 等;(2)有特定意义的数,如圆周率TT,或化简后含有 兀的数,如三+8等;3(3)有特定结构的数,如 0.1010010001等;(4)某些三角函数值,如 sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有 a+b=0, a= b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|可)。零的绝对值是它本身,也可看成它的相反数,若|a|二a,则a可;
3、若|a|= -a,则a磷。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“指”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数 x的平方等于a,
4、即x2=a,那么这个数x就叫做a的平方根(或二次 方根)。表示方法:正数a的平方根记做“ 士,3”,读作“正、负根号 a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数 a的平方根的运算,叫做开平方。,a _0注意ja的双重非负性:y-a _03、立方根一般地,如果一个数 x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。表示方法:记作3Ja性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:3/二a = -Va ,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较1、实数比较大小:正数大于
5、零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右 边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,a -b 0 a b,a-b=0:= a=b,a - b : 0 a : : ba .a .a .(3)求商比较法:设 a、b是两正实数, 一 a1u a >b;- =1u a = b;- <1u a < b;bbb(4)绝对值比较法:设 a、b是两负实数,则 a>|bu a < bo(5)平方法:设a、b是两负实数,则 a2Ab2u
6、 a<b。五、算术平方根有关计算(二次根式)1、含有二次根号“七厂”;被开方数a必须是非负数。2、性质:(1) (Ja)2 = a(a 之0).-a(a - 0)(2)7a2 =口 =- a(a :二 0)(3) cab =声Jb(a 至 0, b 之 0) ( a a *Vb =Vab(a >0,b >0) 4 崇a"-0)噌=序 2b>0)3、运算结果若含有“a”形式,必须满足:(i)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算(1)六种运算:力口、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再
7、算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律a b = b a加法结合律(a b) c = a(b c)乘法交换律ab二ba乘法结合律(ab)c = a(bc)乘法对加法的分配律 a(b - c) = ab ac第三章位置与坐标一、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点。称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
8、2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念对于平面内任意一点 P过点P分别x轴、y轴向作垂线,垂足在上 x轴、y轴对应的数a, b分别叫做 点P的横坐标、纵坐标,有序数对(a, b)叫做点P的坐标。点的坐标用(a, b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位 置不能颠倒。平面内点的坐标是有序实数对,当 a#b时,(a, b)和(b, a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位
9、置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限 仁x >0, y > 0点P(x,y)在第二象限 匕x < 0, y > 0点P(x,y)在第三象限 u x <0, y <0点P(x,y)在第四象限。x >0, y <0(2)、坐标轴上的点的特征点P(x,y)在x轴上u y = 0 , x为任意实数点P(x,y)在y轴上u x =0 , y为任意实数点P(x,y)既在x轴上,又在y轴上仁x, y同时为零,即点 P坐标为(0, 0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直
10、线 y=x)上仁x与y相等点P(x,y)在第二、四象限夹角平分线上u x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特征点P与点p'关于x轴对称二 横坐标相等,纵坐标互为相反数,即点 P (x, y)关于x轴的对称点为P' (x, -y)点P与点p'关于y轴对称二纵坐标相等,横坐标互为相反数,即点 P (x, y)关于y轴的对称点为P' (-x, V)点P与点p'关于原点对称 之 横、纵坐标均互为相反数,即点 P (
11、x, y)关于原点的对称点为P' (-x,-y)(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)至ij x轴的距离等于 y(2)点P(x,y)至ij y轴的距离等于|x(3)点P(x,y)到原点的距离等于 ,x2 +y2三、坐标变化与图形变化的规律:坐标(x , y )的变化图形的变化x x a 或 y x a被横向或纵向拉长(压缩)为原来的a倍一x x a , y x a放大(缩小)为原来的 a倍x x ( -1 )或 y x ( -1 )关于y轴或x轴对称x x ( -1 ) , y x ( -1 )关于原点成中心对称x +a 或 y+ a沿x
12、轴或y轴平移a个单位x +a , y+ a沿x轴平移a个单位,再沿y轴平移a个单第四章一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个 y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。k的符号b的符号函数图像图像特征k>0b>0y/ /01/x x图像经过一、二、三象限, y随x 的增大而增大。b<0y0 '/L/ ,x图像经过一、三、四象限
13、, y随x 的增大而增大。K<0b>0y07图像经过一、二、四象限,y随x的增大而减小b<0yx图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫 做关系式(解析)法。(2)列表法把自变量x的一系列值和函数 y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数
14、的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量 x, y间的关系可以表示成 y = kx+b (k, b为常数,k¥0)的形式,则称y是 x的一次函数(x为自变量,y为因变量)。特别地,当一次函数y = kx+b中的b=0时(即y = kx) (k为常数,卜#0),称丫是x的正比例函数。2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数y = kx + b的图像是经过点(
15、0, b)的直线;正比例函数 y = kx的图像是经过原点(0, 0) 的直线。4、正比例函数的性质一般地,正比例函数 y = kx有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。5、一次函数的性质一般地,一次函数 y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数, 就是要确定正比例函数定义式y = kx (k*0)中的常数ko确定一个一次函数,需要确定一次函数定义式 y=kx+b (k
16、/0)中的常数k和b。解这类问题的一般方法是待定系数法。7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0 (k、b为常数,kw 0)的形式.而一次函数解析式形式正是y=kx+b (k、b为常数,kw0).当函数值为0时,?即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0 (k、b为常数,kw0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.第五章二元一次方程组1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式
17、方程叫做二元一次方程。2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法6、一次函数与二元一次方程(组)的关系:(1) 一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解(2) 一次函数与二元一次方程组的关系:二元一次方程组 1ax +by = c的解可看作两个一次函数y
18、=曳x1十93 1 w L 5b1bla2x + b2y = c2和丫 = 一包人+包的图象的交点。b2b2当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明 相应的二元一次方程组无解。第六章数据的分析1、刻画数据的集中趋势(平均水平)的量: 平均数、众数、中位数 2、平均数1(1)平均数:一般地,对于 n个数x1,x2,xn,我们把一(x1+x2+3 +xn)叫做这n个数的算术平 n均数,简称平均数,记为 xO(2)加权平均数:3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫 做这组数据的中位数。第七章 平行线的证明一.定义与命题1 .定义一般地,能明确指出概念含义或特征的句子,称为定义.定义必须是严密的.一般避免使用含糊不清的术语 ,例如“一些”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CMES 02002-2024铝及铝合金焊丝产品质量等级评价规范
- T/CEMIA 040-202499氧化铝陶瓷用造粒粉
- T/CSPSTC 133-2024地铁隧道毛细管换热系统技术规程
- T/CMA JY-122-2024燃油加油机检测安全操作规范
- 上海社区考试真题及答案
- 制作大豆农田转让合同8篇
- 借款合同(附担保条款)5篇
- 【课件】氧气-2024-2025学年九年级化学人教版(2024)上册
- 基础建设工程储备设备贷款合同7篇
- 办公室卫生评比
- 【KAWO科握】2025年中国社交媒体平台指南报告
- 云南2025年云南省社会科学院中国(昆明)南亚东南亚研究院招聘笔试历年参考题库附带答案详解
- 【语文】第23课《“蛟龙”探海》课件 2024-2025学年统编版语文七年级下册
- 低压电气装置的设计安装和检验第三版
- 国际商务管理超星尔雅满分答案
- 监理人员考勤表
- 克丽缇娜直销奖金制度
- 基本医疗保险参保人员丢失医疗费用票据补支申请
- 高血压病人的护理(PPT)
- DB11-T 825-2021绿色建筑评价标准
- 4例先天性高胰岛素血症患儿的护理
评论
0/150
提交评论