2018年春中考数学《二次函数:全等三角形的存在性问题》_第1页
2018年春中考数学《二次函数:全等三角形的存在性问题》_第2页
2018年春中考数学《二次函数:全等三角形的存在性问题》_第3页
2018年春中考数学《二次函数:全等三角形的存在性问题》_第4页
2018年春中考数学《二次函数:全等三角形的存在性问题》_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 题型八题型八 二次函数综合题二次函数综合题类型四类型四 全等三角形的存在性问题全等三角形的存在性问题第二部分第二部分 攻克题型得高分攻克题型得高分例如图,抛物线例如图,抛物线y=x2+bx+c经过点经过点A(-1,0),B(0,-2),并与并与x轴交于点轴交于点C,点,点M是抛物线对称轴是抛物线对称轴l上任意一点(点上任意一点(点M、B、C三点不在同一直线上)三点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式;)求该抛物线所表示的二次函数的表达式; 典例精析 【思维教练】将点A、B分别代入抛物线的表达式,通过解方程组,可得到b,c的值; (1)求该抛物线所表示的二次函数的表达式

2、;例题图例题图 解:解:(1)将点将点A(1,0),B(0,2)代入代入yx2bxc中得,中得,二次函数表达式为二次函数表达式为yx2x2;1-0122,b cbcc 解得(2)在抛物线上找出两点)在抛物线上找出两点P1、P2,使得,使得MP1P2与与MCB全等,并求出全等,并求出P1、P2的坐标的坐标.【思维教练】利用全等时对应边相等,结合抛物线的对称性,分别作B、C点关于对称轴对称的点,所作对称点即为所求P1,P2点(2)令令yx2x20得得x11,x2,所以点所以点C的坐标为的坐标为(2, ,0) 易得抛物线对称轴为易得抛物线对称轴为x ,第一种情况:如第一种情况:如解图解图,取点取点C

3、关于对称轴关于对称轴l的对称点的对称点A,点点B关于对称轴关于对称轴l的的对称点为对称点为B(1,2),则当点则当点P1,P2与与A,B重合时重合时,有有MP1P2与与MBC全等全等,此时点此时点P1,P2的坐标为的坐标为(1,0),(1,2)例解图122ba第二种情况为:过点作第二种情况为:过点作MP1BC,交抛物线于,交抛物线于P1,如解图,如解图,若若MP1C CBM,则,则MP1BC.四边形四边形MBCP1为平行四边形,为平行四边形,xMx xP1xC;xPxMxBxC 02 .令抛物线中令抛物线中x ,解得,解得y ,12527474P1( , ),此时,此时P2与与C点重合,点重合,P1( , ),P2(2,0)综上所述,满中足条件的综上所述,满中足条件的P1,P2点共有两种,点共有两种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论