版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基础达标如果平面的一条斜线和它在平面上的射影的方向向量分别是a(0,2,1),b(,),那么这条斜线与平面的夹角是()A90°B60°C45°D30°解析:选D.cosa,b,a,b30°.平面的一个法向量为n1(4,3,0),平面的一个法向量为n2(0,3,4),则平面与平面夹角的余弦值为()ABC.D以上都不对解析:选B.cosn1,n2,平面与平面夹角的余弦值为.如图,在空间直角坐标系中有正三棱柱ABCA1B1C1,已知AB1,点D在BB1上,且BD1,则AD与侧面AA1C1C所成角的余弦值是() A.BC.D解析:选D.A点坐标为(,0
2、),D点坐标为(1,0,1),(,1)易知平面ACC1A1的法向量n(1,0,0)(,0)(,0)cosn,所求角的余弦值为 .在正四棱锥PABCD中,PA2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角为()A90°B60°C45°D30°解析:选C.建立如图所示的空间直角坐标系,则PAO60°,OP,OA1,AB,P(0,0,),A(,0),B(,0),C(,0),E(,),(,),(,),cos,45°,即异面直线PA与BE所成角为45°.如图所示,已知点P为菱
3、形ABCD外一点,且PA平面ABCD,PAADAC,点F为PC中点,则平面CBF与平面BFD夹角的正切值为()A.BC.D解析:选D.连接BD,设ACBDO,连接OF,以O为原点,OB,OC,OF所在直线分别为x、y、z轴,建立空间直角坐标系,设PAADAC1,则BD, B(,0,0),F(0,0,),C(0,0),D(,0,0)(0,0),且为平面BDF的一个法向量由(,0),(,0,)可得平面BCF的一个法向量n(1,)cosn,sinn,.tann,.在空间中,已知二面角l的大小为,n1,n2分别是平面,的法向量,则n1,n2的大小为_解析:半平面(及其法向量n1
4、)绕l旋转使与重合,若n1与n2同向时n1,n2,若n1与n2反向时n1,n2.答案:或如图,在正方体ABCDA1B1C1D1中,M,N分别是CD,CC1的中点,则异面直线A1M与DN所成的角的大小是_解析:建立如图所示的空间直角坐标系,令|AB|2,则D(0,0,0),C(0,2,0),M(0,1,0),A1(2,0,2),C1(0,2,2),N(0,2,1),(2,1,2),(0,2,1),·0,即异面直线A1M与DN所成的角为.答案:如图所示,在三棱锥PABC中,PA平面ABC,ACBC,PAAB2AC2a,则AB与平面PBC所成角的正弦值为_解析:建立
5、如图所示的空间直角坐标系,则AB2a(a0),O(0,0,0),B(0,2a,0),C(a,0),P(0,0,2a)(0,2a,0),设平面PBC的法向量n(x,y,z),则,即,令yz1,则x,n(,1,1),cosn,.答案:在三棱柱ABCA1B1C1中,A1A底面ABC,ACB90°,AA1ACBC2,D为AB中点(1)求证: BC1平面A1CD;(2)求直线AA1与平面A1CD所成角的正弦值解:(1)证明:连接AC1交A1C于O点,则DO为ABC1的中位线,故DOBC1,又DO平面A1CD,BC1平面A1CD,所以BC1平面A1CD.(2)以CA,CB,CC1所在
6、的直线为x,y,z轴建立空间直角坐标系,则A(2,0,0),A1(2,0,2),D(1,1,0),设平面A1DC的法向量为n(x,y,z),由得,令x1得n(1,1,1)设直线AA1与平面A1CD所成角为,则sin |cos,n|.如图,PC平面ABC,DAPC,BCA90°,ACBC1,PC2,AD1.(1)求证:PD平面BCD;(2)设Q为PB的中点,求二面角QCDB的余弦值解:(1)证明:因为PC平面ABC,所以PCBC.又BCAC,因为PC平面PDAC,AC平面PDAC,ACPCC,所以BC平面PDAC,又PD平面PDAC,所以BCPD.因为ACBCA
7、D1,PC2,DAAC,所以PDCD.因为CD平面BCD,BC平面BCD,CDBCC,所以PD平面BCD.(2)由PC平面ABC,BCAC所以CA,CB,CP两两垂直以C为坐标原点,分别以CA,CB,CP所在直线为x,y,z轴,建立如图所示的空间直角坐标系则A(1,0,0),B(0,1,0),C(0,0,0),P(0,0,2),Q(0,1),D(1,0,1)所以(1,0,1),(0,1)设平面CDQ的法向量n1(x1,y1,z1)则,取x11.解得,所以n1(1,2,1)设平面CDB的法向量n2(x2,y2,z2),则,取x21.解得,所以n2(1,0,1)设二面角QCD
8、;B为,所以cos .所以二面角QCDB的余弦值为.能力提升在正四面体ABCD中,E为棱AD的中点,则CE与平面BCD的夹角的正弦值为()A.BC.D解析:选B.如图,以BCD的中心O为原点,OC,OA所在直线分别为x轴,z轴,平面BCD内垂直OC于点O的直线为y轴建立空间直角坐标系,设正四面体的棱长为1,则C(,0,0),A(0,0,),D(,0),所以E(,),所以(,),因为平面BCD的一个法向量为n(0,0,1),所以cos,n,设夹角为,sin |cos,n|.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB4,
9、AC6,BD8,CD2,则该二面角的大小为_解析:取基底,则二面角大小为,且,22222·2·2·,即4×176242822×6×8cos,cos,即二面角的大小为60°.答案:60°如图,已知四棱锥PABCD中,底面ABCD为菱形,且PAACABBC2,PA平面ABCD,E,F分别是BC,PC的中点(1)证明:AEPD;(2)求二面角EAFC的余弦值解:(1)证明:由ACABBC,可得ABC为正三角形因为E为BC的中点,所以AEBC.又BCAD,因此AEAD.因为PA平面ABC
10、D,AE平面ABCD,所以PAAE.而PA平面PAD,AD平面PAD且PAADA,所以AE平面PAD.又PD平面PAD,所以AEPD.(2)由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分别为BC,PC的中点,所以A(0,0,0),B(,1,0),C(,1,0),D(0,2,0),P(0,0,2),E(,0,0),F,所以(,0,0),.设平面AEF的一个法向量为m(x1,y1,z1),则,因此取z11,则m(0,2,1),因为BDAC,BDPA,PAACA,所以BD平面AFC,故为平面AFC的一法向量又(,3,0),所以cosm,.因为二面角E
11、173;AFC为锐角,所以所求二面角的余弦值为.4.在如图所示的四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PDDC,点E是PC的中点,作EFPB交PB于点F. (1)求证:PA平面EDB;(2)求证:PB平面EFD;(3)求二面角CPBD的大小解:如图所示建立空间直角坐标系,点D为坐标原点,设DC1.(1)证明:连接AC,AC交BD于点G,连接EG. 依题意得A(1,0,0),P(0,0,1),E.因为底面ABCD是正方形,所以点G是此正方形的中心,故点G的坐标为,且(1,0,1),.所以2,即PAEG.而EG平面EDB,且PA平面EDB,因此PA平面EDB.(2)证明:依题意得B(1,1,0),(1,1,1)又,故·00.所以PBDE.由已知EFPB,且EFDEE,所以PB平面EFD.(3)已知PBEF,由(2)可知PBDF,故EFD是二面角CPBD的平面角设点F的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婴儿用高椅产业深度调研及未来发展现状趋势
- 2024年新个人购车贷款协议样式
- 2024年消防工程承包协议详细范本
- 2024年借款居间服务详细协议样本
- 2024年定制化住宅建设协议范本
- 文化机构数字化网络方案
- 养老院服务质量评估及合同管理
- 特殊场所消防管道拆除施工方案
- 数字广告合同
- 2024年柑橘类水果买卖协议
- 部编版语文二年级上册第五单元大单元教学设计核心素养目标
- 广铁集团校园招聘机考题库
- 2023~2024学年广东省广州市各区九年级上学期期末考试数学试题汇编:旋转(含解析)
- 特种设备安全管理考试题库附答案A (2024年)
- DL-T 1160-2021 电站锅炉受热面电弧喷涂施工及验收规范
- NB-T+10488-2021水电工程砂石加工系统设计规范
- 责任保险行业发展趋势及前景展望分析报告
- 办公室租赁协议样本
- 医学美容技术专业《美容礼仪》课程标准
- 国能辽宁北票 200MW 风力发电项目地质灾害危险性评估报告
- 2024 年上海市普通高中学业水平等级性考试 物理 试卷
评论
0/150
提交评论