Q345钢CO2气体保护焊焊接工艺的评定_第1页
Q345钢CO2气体保护焊焊接工艺的评定_第2页
Q345钢CO2气体保护焊焊接工艺的评定_第3页
Q345钢CO2气体保护焊焊接工艺的评定_第4页
Q345钢CO2气体保护焊焊接工艺的评定_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Q345钢CO2气体保护焊焊接工艺的评定摘要 本文以Q345钢的CO2气体保护焊的工艺为例对其进行了分析与研究。 Q345钢综合力学性能良好,低温性能亦可,塑性和焊接性良好,用做中低压力容器、油罐、车辆、起重机、矿山机械、电站、桥梁等承受动载荷的结构。热轧或正火状态使用,可用于-40以下寒冷地区的各种结构。二氧化碳气体保护焊目前已发展成为一种重要的熔焊方法,具有成本低、效率高、操作灵活等特点。广泛应用于汽车、工程机械、造船业、机车、电梯、锅炉压力容器等制造业,以及各种金属结构和金属加工机械的生产。 首先分析了Q345钢的焊接性,其次对CO2气体保护焊特点和工艺的进行了分析,从而确定了Q345钢

2、的CO2气体保护焊焊接工艺。通过工艺参数的优化选择,不仅能减少焊接过程中的常见问题,而且有效减少焊接缺陷的出现,并能提高生产效率,节约生产成本。关键词:Q345钢,CO2气体保护焊,工艺,焊接缺陷目录1. Q345钢的焊接特点. CO2气体保护焊简介 . 2. CO2气体保护焊发展史. 3. CO2气体保护焊特点.4. CO2气体保护焊冶金原理.5. CO2气体保护焊的熔滴过渡形式.76. 第2章 CO2 气体保护焊工艺. 7. 焊前准备. 8. 坡口设计.9. 坡口加工方法与原理.10. 定位焊缝.11. 焊接参数的选择. 12. 焊丝直径的选择 .13. 焊接电流的选择.14. 电弧电压的

3、选择 .15. 焊接速度的选择. 16. 焊丝伸出长度的选择. 17. 电流极性的选择.18. 气体流量的选择.19. 第3章 Q345钢在CO2气体保护焊时常见问题及对策 . 20. 焊接裂纹.21. 冷裂纹 .22. 其它裂纹.23. 气孔. 24. N2气孔. 25. H2气孔. 26. CO气孔. 27. 焊接飞溅.28. 飞溅产生原因.29. 减少飞溅的方法.30. 第4章 Q345钢工艺评定的目的和方法.31. Q345钢工艺评定的规程.32. 工艺规程的实施过程. 33. Q345钢筒体制造装配工艺过程卡. 34. Q345钢筒体焊接工艺卡.35. 结 论.36. 谢 辞.37.

4、 参考文献.前言 随着改革开放的突飞猛进和社会主义现代化建设的日新月异,我们对焊接技术提出了更高的要求。在上世纪最后十年间,焊接技术在我国国民经济建设各个领域的应用在广度和深度方面均产生了质的飞跃,呈现出新的群雄并存,共同繁荣的新格局;焊接机械化自动化水品也不断提高,具有高参数,高寿命,大型化,超微细等特征的焊接制品不断出现,焊接结构设计革新程度迅速提升;焊接新工艺,新方法投入生产实际,应用周期大为缩短;高效优质焊接材料,焊接设备系列化和国产化均盘上新台阶。 Q345钢的主要组成元素是增加了V、Ti、Nb微量合金元素。少量的V、Ti、Nb合金元素能细化晶粒,提高钢的韧性,钢的综合机械性能得到较

5、大提高。也正因为如此,钢板的厚度才可以做得更大一些。 因此,Q345钢的综合机械性能好,特别是它的低温性能更好。二氧化碳气体保护焊是以二氧化碳气为保护气体,进行焊接的方法。在应用方面操作简单,适合自动焊和全方位焊接。在焊接时不能有风,适合室内作业。 由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。 二氧化碳气体保护电弧焊(简称CO2焊)的保护气体是二氧化碳(有时采用CO2Ar的混合气体)。由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断。因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数

6、选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。 因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。Q345钢的广泛应用,以及其较好的焊接性。而CO2气体保护电弧焊可以焊接可焊接碳钢、低合金钢、不锈钢、铝及铝合金、铜及铜合金。也可以用于钛及铁合金的焊接。但在焊接钛及钛合金时,需对焊缝正面及反面进行良好的气体保护。但不宜焊接的金属低熔点金属如:铝、锡、锌等不能使用CO2气体保护焊。包括被以上低熔金属涂覆过的钢结构焊件。以及CO2气体保护焊成本低,效率高,操作灵活的优

7、点。所以,Q345钢的CO2气体保护焊的焊接工艺也显得尤为重要。一Q345钢简介(一)Q345钢的应用与分类 Q345钢是一种优质的低合金高强钢(C<0.2%),广泛应用于桥梁、车辆、船舶、压力容器等。Q代表的是这种材质的屈服,后面的345Mpa,就是指这种材质的屈服值,在345Mpa左右。并随着材质的厚度的增加而使其屈服值减少。类同于Q235的命名方法。Q345A,Q345B,Q345C,Q345D,Q345E。这是等级的区分,所代表的,主要是冲击的温度有所不同而已。Q345A级,是不做冲击;Q345B级,是20常温冲击;Q345C级,是0冲击;Q345D级,是20冲击;Q345E级,

8、是40冲击。在不同的冲击温度,冲击的数值也有所不同。 在板材里,属低合金系列。在低合金的材质里,此种材质为最普通的。Q345化学成分及力学性能分析Q345力学性能分析见表表1-1 Q345力学性能分析表(二)Q345钢的焊接特点1碳当量(Ceq)的计算Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (1-1) 按以上公式计算出材料的碳当量为0.39。由计算结果可知,试验用钢的淬硬倾向不大,焊接性优良,焊接时可不预热。2Q345钢在焊接时易出现的问题 (1)热影响区的淬硬倾向Q345钢在焊接冷却过程中,热影响区容易形成淬火组织马氏体,使近缝区的硬度提高,塑性下降。结果导致焊后

9、发生裂纹。(2)冷裂纹敏感性Q345钢的焊接裂纹主要是冷裂纹。 CO2气体保护焊简介 CO2气体保护焊发展史CO2气体保护焊是利用CO2气体为保护气体的保护电弧焊,简称CO2焊。CO2 = CO12 O2 放热反应 ,上式反应有利于对熔池的冷却作用。 焊接技术发展与金属结构制造状况密不可分。50年代初期,CO2气保焊技术一经开发,就应用于金属结构制造,并伴随着焊接结构设计、制造技术水平的不断提高,逐渐成为金属结构焊接的主要方法。其高效、优质、自动化的技术特点,具有良好应用条件,并且极大地推动了金属结构焊接技术和相关产业的发展,在焊接技术发展史上书写了辉煌的一页。经过多年努力,我国CO2气保焊技

10、术在金属结构制造业中的推广应用,取得了长足进步,并可以总结为三个阶段:探索阶段、起步阶段、发展阶段。 探索阶段是从60年代到80年代中期,国内高校、研究单位及一些厂矿企业对CO2焊接技术外于研究、开发、收集、整理国外焊接技术,在这一时期CO2气保焊技术没有形成大批量金属结构的生产能力及相关产品的生产规模。起步阶段是从80年代中期到90年代初的时间里,借助于我国在“六五”、“七五”重大技术装备,引进技术合作生产及大型基础设施工程建设的契机,引进国外先进焊接技术和装备,对大型骨干机械企业进行技术改造。 可以说是在借助国外成熟技术和生产工艺,形成了我国大型金属结构企业的CO2气保焊技术的生产能力,从

11、而大大改变了金属结构制造企业的装备水平、制造能力,提高了产品质量和生产效率,改变了传统的金属结构焊接工艺,引起了焊接技术的革命,推动了国内CO2气保焊设备、焊接材料、辅件等领域技术研究和推广应用工作的发展。 发展阶段是从90年代初至今的近十年时间,自1992年中国焊接协会和中国机械工程学会焊接分会联合举办“全国CO2气保焊技术推广应用交流会”以来,CO2气保焊技术在金属结构行业中应用、推广工作蓬勃发展。一批服务于CO2气保焊技术的企业,把握住了CO2气保焊技术推广的市场脉搏,迅速发展起来。如:焊接设备方面的时代集团公司、天津电焊机厂二CO2气体保护焊简介(一)CO2气体保护焊特点1优点:(1)

12、生产效率高和节省能量。 (2)焊接成本低。 (3)焊接变形小。(4)对油、锈的敏感度较低。(5)焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹力。 (6)电弧可见性好,短路过渡可用于全位置焊接。缺点:(1)焊接过程飞溅较多,焊缝外形较为粗糙,特别是当焊接参数不匹配时,飞溅就更为严重。(2)不能焊接易氧化的金属材料,且不适合在有风的地方施焊。 (3)焊接过程弧光较强,尤其是采用大电流焊接时,电弧的辐射较强,故要特别重视对操作者的劳动保护。(4)设备比较复杂,易出现故障,且需要专业人员负责维修。CO2气体保护焊冶金原理在进行焊接时,电弧空间同时存在CO2、CO、O2和O原子等几种气体,其中CO不与液

13、态金属发生任何反应,而CO2、O2、O原子却能与液态金属发生如下反应:Fe+CO2 FeO+CO(进入大气中) Fe+O FeO (进入熔渣中) C+O CO (进入大气中) CO气孔问题:由上述反应式可知,CO2和O2 对Fe和C都具有氧化作用,生成的FeO一部分进入渣中,另一部分进入液态金属中,这时FeO能够被液态金属中的C所还原,反应式为:FeO+C Fe+CO ,这时所生成的CO一部分通过沸腾散发到大气中去,另一部分则来不及逸出,滞留在焊缝中形成气孔。针对上述冶金反应,为了解决CO气孔问题,需使用焊丝中加入含Si和Mn的低碳钢焊丝,这时熔池中的FeO将被Si、Mn还原:2FeO+Si

14、2Fe+SiO2 (进入渣中) FeO+Mn Fe+MnO (进入渣中) 反应物SiO2、MnO它们将生成FeO和Mn的硅酸盐浮出熔渣表面,另一方面,液态金属含C量较高,易产生CO气孔,所以应降低焊丝中的含C量,通常不超过0.1。 氢气孔问题:焊接时,工件表面及焊丝含有油及铁锈,或CO气体中含有较多的水分,但是在CO2保护焊时,由于CO2具有较强的氧化性,在焊缝中不易产生氢气孔。(二) CO2焊的熔滴过渡形式1短路过渡:细丝(焊丝直径小于1.2mm),以小电流、低电弧电压进行焊接。2射滴过渡:中丝(焊丝直径1.62.4mm),以大电流、高电弧电压进行焊接。3射流过渡:粗丝(焊丝直径为2.45m

15、m),以大电流、低电弧电压进行焊接。三CO2气体保护焊工艺 (一)焊前准备焊前准备工作包括坡口设计、坡口加工、清理、焊件装配等。(二) 坡口设计 CO2气体保护焊采用细颗粒过渡时,电弧穿透力较大,熔深较大,容易烧穿焊件,所以对装配质量要求较严格。坡口开得要小一些,钝边适当大些,对间隙不能超过2mm。如果用直径1.6mm的焊丝钝边可留46mm,坡口角度可减小到45°左右。板厚在12mm以下开I形坡口;大于12mm的板材可以开较小的坡口。但是,坡口角度过小易形成“梨”形熔深,在焊缝中心可能产生裂纹。尤其在焊接厚板时,由于拘束应力大,这种倾向更大,必须十分注意。 CO2气体保护焊采用短路过

16、渡时熔深浅,不能按细颗粒过渡方法设计坡口。通常允许较小的钝边,甚至可以不留钝边。又因为这时的熔池较小,熔化金属温度低、粘度大,搭桥性良好,所以间隙大些会烧穿。如果对接接头,允许间隙为3mm。要求较高时,装配间隙应小于3mm。采用细颗粒过渡焊接角焊缝时,考虑到熔深大的特点,其焊角尺寸K可以比焊条电弧焊时减少10%20%,见表2-1。因此,可以进一步提高气体保护焊的效率,减少材料的消耗。(三)坡口加工方法与清理 坡口加工方法主要有机械加工、气割和碳弧气刨等。CO2气体保护焊时对坡口精度的要求比焊条电弧焊高。定位焊之前应将待焊部位及两侧1020mm范围内的油污、锈迹等污物,并在焊件表面涂上一层飞溅防

17、粘剂,在喷嘴上涂一层喷嘴防堵剂。6mm以下薄板上的氧化膜对质量几乎无影响;焊厚板时,氧化皮能影响电弧稳定性、恶化焊缝成形和生成气孔。不同板厚的焊角尺寸(四)定位焊缝 定位焊是为了防止变形和维持预先的破口而先进行的点固焊。定位焊易生成气孔和夹渣。也是随后进行CO2气体保护焊时产生气孔和夹渣的主要原因,所以必须认真地焊接定位焊缝。定位焊可采用CO2气体保护焊和焊条电弧焊。用焊条电弧焊焊接的定位焊缝,如果渣清除不净,会引起电弧不稳和产生缺陷。 定位焊缝的定位也很重要,应尽可能的使定位焊缝分布在焊缝的背面。当背面难以焊接时,可在正面焊一条短焊缝。焊接时此处就不要再焊了。定位焊缝的长度和间距,应根据焊件

18、厚度决定。薄板的定位焊缝应细而短,长度为1550mm,间距为30150mm;中厚板的定位焊缝间距可达100150mm。为增加定位焊缝的焊接深度,应适当增大定位焊缝及其长度,一般为1550mm长。使用夹具定位焊时,应考虑磁偏吹问题。因此,夹具的材质、形状、位置和焊接方向应注意。(五)焊接参数的选择 CO2气体保护焊的焊接参数较多,主要包括焊丝直径、焊接电流、电弧电压、焊接速度、焊丝干伸长度、电流极性和气体流量等。1 焊丝直径的选择 对于钢板厚度为14mm时,应采用直径为0.61.2mm的焊丝;当钢板厚度大于4mm时,应采用直径大于或等于1.6mm的焊丝。在电流相同时,熔深将随焊丝直径的减少而增加

19、;焊丝越细,则焊丝熔化速度越高。焊丝直径可根据表2-2选择。表2-2 焊丝直径的选择注:焊丝直径常用规格有0.6,0.8,1.0,1.2,1.6mm等。 2.焊接电流的选择1在保证母材焊透又不致烧穿的原则下,应根据母材厚度,接头形式焊接位置及焊丝直径正确选用焊接电流。2焊接电流是确定熔深的主要因素。随着电流的增加,熔深和熔敷度 都要增加,熔宽也略有增加。3送丝速度越快,焊接电流越大,基本上是正比关系。4焊接电流过大时,会造成熔池过大,焊缝成形恶化。5各种直径的焊丝常用的焊接电流范围见表6立焊,仰焊及对接接头横焊表面焊道时,当所用焊丝直径1.0mm时,应选用较小的焊接电流。见表2-5。表2-5

20、立、仰焊接时电流选择3.电弧电压的选择 为获得良好的工艺性能,应选择最佳的电弧电压,该值是一个很窄的电压区间,一般仅为12V左右。最佳的电弧电压与电流的大小,位置等因素有关。可参见表2-6。表2-6 不同焊接时电弧电压的选择1随电弧电压的增加,熔宽明显增加,而余高和熔深略有减少,焊缝机械性能有所降低。2电弧电压过高,会产生焊缝气孔和增加飞溅。电弧电压过低,焊丝将插入熔池,电弧不稳,影响焊缝形成。 4.焊接速度的选择1焊接速度过高,会破坏气体保护效果,焊缝成形不良,焊缝冷却过快,导致降低焊缝塑性,韧性。焊接速度过低易使焊缝烧穿,形成粗大焊缝组织。2半自动焊接时,焊接速度一般不超过30米/时。4一

21、般认为焊丝伸出长度为焊丝的1015倍。细丝时(焊丝直径1.2mm),焊丝伸出长度以815mm为宜,粗丝时,在1525mm之间。 为减少飞溅,尽量使焊丝伸出长度少些,但随焊接电流的增大,其伸出长度应适当增加。电流极性的选择 CO2气体保护焊主要采用直流反接法。不同极性接法的应用范围及特点见表2-7。表2-7 电流极性的应用范围及特点5.气体流量的选择1气体流量直接影响气体保护效果。气体流量过小时,焊缝易产生气孔等缺陷 气体流量过大时,不仅浪费气体,而且焊缝由于氧化性增强而形成氧化皮,降低焊缝质量。2气体流量应根据焊接电流,焊接速度,焊丝伸出长度,喷嘴直径,焊接位置等因素考虑。当焊接电流越大,焊接

22、速度越快,焊丝伸出长度较长,喷嘴直径增大,室外焊接及仰焊位置时,应采用较大的气体流量。3当焊丝直径小于或等于1.2mm时,气体流量一般为615升/分;焊丝直径大于1.2mm时,气体流量应取1525升/分。三Q345钢在CO2气保焊时常见缺陷及对策(一)焊接裂纹 焊接缺陷是焊接件中最常见的一种严重缺陷。金属的焊接性中包括了两大类的问题:一类是焊接引起的材料性能变坏,使焊件失掉了材料原来特有的性能,如不锈钢焊后失掉其耐蚀性等;另一类是在焊接接头或其附近的母材内产生裂纹和气孔等缺陷。裂纹影响焊接件的安全使用,是一种非常危险的工艺缺陷。焊接裂纹不仅发生于焊接过程中,有的还有一定潜伏期,有的则产生于焊后

23、的再次加热过程中。焊接裂纹根据其部位、尺寸、形成原因和机理的不同,可以有不同的分类方法。按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。Q345钢的焊接裂纹主要是冷裂纹。(二)冷裂纹 Q345钢的焊接裂纹主要是冷裂纹。根据引起的主要原因可分为淬火裂纹、氢致延迟裂纹和变形裂纹。1定义冷裂纹焊接接头冷却到较低温度时(对于钢来说在MS温度,即奥氏体开始转变为马氏体的温度以下)产生的焊接裂纹。最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。2产生原因(1) 焊接接头存在淬硬组织,性能脆化。

24、(2) 扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成17/38大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)。3)存在较大的焊接拉应力。3 预防措施(1)选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性。(2)减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水)。(3)避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度)。(4)降低焊接应力枣采用合理的工艺规范,焊后热处理等。(5)焊后立即进行消氢处理(即加热到250,保温26h左右,使焊缝金属中的扩散氢逸出金属表面)。(三)其它裂纹1热裂纹 多产生于接近固相线的高温下,

25、有沿晶界(见界面)分布的特征;但有时也能在低于固相线的温度下,沿“多边形化边界”形成。热裂纹通常多产生于焊缝金属内,但也可能形成在焊接熔合线附近的被焊金属(母材)内。按其形成过程的特点,又可分为下述三种情况。(1)结晶裂纹 产生于焊缝金属结晶过程末期的“脆性温度”区间,此时晶粒间存在着薄的液相层,因而金属塑性极低,由冷却的不均匀收缩而产生的拉伸变形超过了允许值时,即沿晶界液层开裂。消除结晶裂纹的主要冶金措施为通过调整成分,细化晶粒,严格控制形成低熔点共晶的杂质元素等,以达到提高材料在脆性温度区间的塑性;此外,从设计和工艺上尽量减少在该温度区间的内部拉伸变形。(2)液化裂纹 主要产生于焊缝熔合线

26、附近的母材中,有时也产生于多层焊的先施焊的焊道内。 形成原因是由于在焊接热的作用下,焊缝熔合线外侧金属内产生沿晶界的局部熔化,以及在随后冷却收缩时引起的沿晶界液化层开裂。 造成这种裂纹的情况有二:一是材料晶粒边界有较多的低熔点物质;另一种是由于迅速加热,使某些金属化合物分解而又来不及扩散,致局部晶界出现一些合金元素的富集甚至达到共晶成分。防止这类裂纹的原则为严格控制杂质含量,合理选用焊接材料,尽量减少焊接热的作18/38用。(3)多边化裂纹 是在低于固相线温度下形成的。其特点是沿“多边形化边界”分布,与一次结晶晶界无明显关系;易产生于单相奥氏体金属中。这种现象可解释为由于焊接的高温过热和不平衡

27、的结晶条件,使晶体内形成大量的空位和位错,在一定的温度、应力作用下排列成亚晶界(多边形化晶界),当此晶界与有害杂质富集区重合时,往往形成微裂纹。消除此种缺陷的方法是加入可以提高多边形化激活能的合金元素,如在Ni-Cr合金中加入W、Mo、Ta等;另一方面是减少焊接时过热和焊接应力。2再热裂纹 产生于某些低合金高强度钢、珠光体耐热钢、奥氏体不锈钢以及镍基合金焊后的再次高温加热过程中。其主要原因一般认为当焊后再次加热到 500700时,在热影响区的过热区内,由于特殊碳化物析出引起的晶内二次强化,一些弱化晶界的微量元素的析出,以及使焊接应力松弛时的附加变形集中于晶界,而导致沿晶开裂。因此,这种裂纹具有

28、晶间开裂的特征,并且都发生在有严重应力集中的热影响区的粗晶区内。为了防止这种裂纹的产生,首先在设计时要选择再热裂纹敏感性低的材料,其次从工艺上要尽量减少近缝区的内应力和应力集中问题。3层状撕裂 主要产生于厚板角焊时,其特征为平行于钢板表面,沿轧制方向呈阶梯形发展。这种裂纹往往不限于热影响区内,也可出现在远离表面的母材中。其产生的主要原因是由于金属中非金属夹杂物的层状分布,使钢板沿板厚方向塑性低于沿轧制方向,另外由于厚板角焊时在板厚方向造成了很大的焊接应力,所以引起层状撕裂。通常认为片状硫化物夹杂危害最大,而层状硅酸盐和过量密集的氧化铝夹杂物也有影响。防止这种缺陷,主要应在冶金过程中严格控制夹杂

29、物的数量和分布状态。另外,改进接头设计和焊接工艺,也有一定的作用。(四)气孔 CO2气体保护焊时,在焊缝中形成气孔的主要原因,一般认为是在焊接熔池中存在着被溶解的N2、CO和H2,在焊缝金属结晶的瞬间,由于溶解度突然减小,这些气体将析出,但当这些气体来不及从熔池逸出时,就会在焊缝中形成气孔。因此,气孔分为氮气孔、氢气孔和一氧化碳气孔。1. N2气孔 氮气孔经常出现在焊缝表面,呈蜂窝状,或者以弥散形式的微气孔分布于焊缝金属中,这些气孔往往在抛光后检验或试水压试验时才能被发现。 氮气来源:一是由于保护效果不良,空气侵入焊接区;二是CO2气体不纯。实践表明,要避免产生氮气孔,最主要的是应增强气体的保

30、护效果。另外,选用含有固氮元素(如Ti和Al)的焊丝,也有助于防止产生氮气孔。2.H2气孔 焊接熔池中氢的含量正比于电弧空间中氢气的含量。电弧区的H2主要是来自焊丝,焊件表面的油污及铁锈,以及CO2气体中的水分。例如,随着CO2气体中水分的增加,会提高在焊接区域内氢的分压,同时也提高H2在焊缝金属中的含量(见表3-1)。当CO2气体中的水分为1.92gcm³和100g焊缝金属中的氢含量为4.7mL时,开始出现单个气孔,如果进一步增加CO2气体中的水分,则焊缝中的气孔说量也将增加。多数国家规定,焊接用CO2气体纯度不应低于99.5%。表3-1 CO2气体中水分与焊缝金属含氢量的关系3.

31、CO气孔 在金属结晶的过程中,由于激烈地析出CO而产生沸腾现象,而CO气体不易逸出,因此在焊缝中形成气孔。如果在焊缝金属中Si的含量不少于0.2%时,就可以防止由于产生CO气体而引起的气孔,这是因为Si在金属凝固温度时能强烈脱氧所致。在大多数情况下,CO气孔产生在焊缝内部,并沿结晶方向分布,呈条虫状,表面光滑。如果焊丝的脱氧能力很低时,CO气孔还可能成为表面气孔。焊接飞溅(五)飞溅产生原因1由冶金反应引起的飞溅这种飞溅主要是CO气体造成的,由于CO2气体具有强烈的氧化性, 焊接时熔滴和熔池中的碳元素被氧化生成CO气体,在电弧高温作用下,其体积急剧膨胀,逐渐增大的CO气体压力最终突破液态熔滴和熔

32、池表面 的约束,形成爆破,从而产生大量的细颗粒飞溅。2极点压力引起的飞溅这种飞溅主要取决于电弧的极性,采用正接焊接时,正离子飞向焊丝 末端,机械冲击力大,造成大颗粒飞溅。3熔滴短路时引起的飞溅发生短路时,焊丝与熔池间形成液体小桥,由于短路电流的强烈加热 及电磁收缩力作用,使小桥爆断而产生细颗粒飞溅。4非轴向熔滴过渡造成的飞溅这种飞溅是在大滴过渡焊接时由于电弧的排斥力所引起的,熔滴形成大颗粒飞溅。5焊接工艺参数选配不当引起的飞溅这种飞溅是由于焊接电流、电弧电压、电感值等参数选配不当而引起的。(六)减少飞溅的方法1选配合理的焊接工艺参数(1)选取适当的电弧电压在合适的电弧电压下施焊,飞溅量可减到最

33、21/38小。例如,当使用1.2mm焊丝焊接时,若焊接电流为220A,焊接速度为30cm/min,电弧电压调到2728V时,可使飞溅量减少。(2)选择合适的焊接电流在合适的焊接电流下施焊,飞溅最小。当使 用1.2mm焊丝焊接时,焊接速度为30cm/min,焊接电流小于280A时,随着焊接电流的增大,飞溅量也增加;但当焊接电流超过280A时,在一定范围内,随着焊接电流的增加飞溅量反而减少,在焊接电流250280A区间内,熔滴以滴状过渡而产生大颗粒飞溅。(3)选择合适的焊接速度,随着焊接速度加快,飞溅量也增加。(4)选择合适的焊丝干伸长度当焊丝干伸长度过长时,焊丝容易产生 过热而成段熔断。合适的焊

34、丝干伸长度应为焊丝直径的1012倍。(5)选择合适的焊接回路电感值采用合适的焊接回路电感数值,可以 调节短路电流增长速度,从而减少短路飞溅。(6)掌握合适的焊枪角度由于焊枪角度后倾或前倾都会使飞溅增多, 所以焊枪角度应选择适宜。2适当控制操作条件及调整焊接设备(1)清理焊接部位。施焊前,应将焊接部位及其周围的铁锈、污物等 清理干净,以减少飞溅。(2)焊丝进给必须保持稳定。焊丝最好使用成盘的焊丝,送丝软管可 能呈直线状态;用干燥的压缩空气将软管内的灰尘、脏物等吹除;将粘附在送丝轮沟槽内的脏物清除干净;经常检查导电嘴前端是否粘附飞溅物;检查导电嘴磨损情况,若磨损严重则应及时更换。(3)保证焊机输入

35、接线及焊接地线连接良好。(4)焊接电缆的长度必须合适,焊接电缆过长,会使飞溅量增加。(5)电源极性采用直流反接,反极性时飞溅量小,电弧稳定。(6)尽可能避免在焊接过程中产生磁偏吹。(7)CO2气体应有足够的纯度,焊接用CO2的纯度不应低于99.5%。 新灌的CO2气瓶内含有水分,直接用于焊接时不但易形成气孔,而且易形 成飞溅,所以气瓶内的水分应除去。先将新灌气瓶倒立静置12h,然后打开阀门把沉积在下部的自由状态的水排出,放水结束后,再将气瓶放正,在使用前仍须先放气23min,放掉气瓶上面部分可能含水的气体。3采用CO2+Ar混合气体保护焊利用CO2+30%Ar作保护气体,熔滴 呈细粒过渡,电弧

36、燃烧稳定,飞溅量较少,焊缝外形美观,焊波细匀。4在焊缝附近涂上适当滑石粉或石灰水涂层为防止少量的飞溅不沾上 工件,还可在焊缝附近涂上适当滑石粉或石灰水涂层,能有效地防止飞溅沾上工件。四Q345钢焊接工艺评定的目的及方法1.目的在于Q345钢是钢结构中常用的钢种,对Q345钢进行焊接工艺评定并制定焊接工艺指导书,对Q345实际焊接生产以及提高钢结构产品的质量具有重要的意义 通过验证Q345焊接工艺指导书的正确性,对焊接的方法,焊接材料,焊接工艺参数的评定做出规定,有效的控制焊接过程质量确保焊接质量符合标准的要求。2.方法焊接工艺评定是评定某一焊接工艺是否能获得力学性能符合要求的焊接接头。首先按照

37、制定的焊接工艺对Q345钢件进行施焊,然后对焊接试件进行力学性能试验,判断该钢件焊接工艺是否合格。 5 Q345钢CO2气体保护焊工艺规程 例如Q345钢筒体的加工一主要技术参数筒体数量:4 法兰:2材料:Q345钢内径偏差:600±3mm组对筒体:长度公差5.9mm,两端平行度公差2mm。检验:试板作晶间腐蚀试验;焊缝外观合格后,进行100%射线探伤二工艺规程实施的过程 1.焊接施工流程  坡口准备点固焊预热里口施焊背部清根外口施焊 里口施焊自检/专检焊后热处理无损检验(焊缝质量一级合格)   2.焊接工艺参数的选择 &#

38、160;通过对Q345钢的焊接性分析,制定措施如下: ( 1) 焊接材料的选用  由于Q345钢的冷裂纹倾向较大,应选用低氢型的焊接材料,同时考虑到焊接接头应与母材等强的原则选用.3.坡口形式:带钝边V型坡口4.焊接方法:CO2气体保护焊。  5.焊接电流:为了避免焊缝组织粗大,造成冲击韧性下降,必须采用小规范焊接。具体措施为:选用小直径焊丝、窄焊道、薄焊层、多层多道的焊接工艺。焊道的宽度不大于焊条的3倍,焊层厚度不大于5mm。焊接电流200-330A; 6. 预热温度:由于Q345钢的Ceq0.45%,

39、在焊接前应进行预热,预热温度T0=100-150,层间温度Ti400。  7. 焊后热处理参数:为了降低焊接残余应力,减小焊缝中的氢含量,改善焊缝的金属组织和性能,在焊后应对焊缝进行热处理。热处理温度为:600-640,恒温时间为2小时(板厚40mm时),升降温速度为125/h 。三、现场焊接顺序:  1. 焊前预热  在翼缘板焊接前,首先对翼缘板进行预热,恒温30分钟后开始焊接。 焊接的预热、层间温度、热处理由热处理控温柜自动控制,采用远红外履带式加热炉片,微电脑自动设定曲线和记录曲线,热电偶

40、测量温度。预热时热电偶的测点距离坡口边缘15mm-20mm。  2. 焊接  2. 为了防止焊接变形,每个柱接头采用二人对称施焊,焊接方向由中间向两边施焊。在焊接里口时(里口为靠近腹板的坡口),第一层至第三层必须使用小规范操作,因为它的焊接是影响焊接变形的主要原因。在焊接一至三层结束后,背面进行清根。在使用碳弧气刨清根结束后,必须对焊缝进行机械打磨,清理焊缝表面渗碳,露出金属光泽,防止表层碳化严重造成裂纹。外口焊接应一次焊完,最后再焊接里口的剩余部分。  3. 当焊接第二层时,焊接方向应与第一层方向相反,

41、以此类推。每层焊接接头应错开15-20mm。    4. 在焊接中应从引弧板开始施焊,收弧板上结束。焊接完成后割掉并打磨干净。5. 焊后热处理:焊口焊接完成后应在12小时内进行热处理。如不能及时进行热处理应采取保温、缓冷措施。  6. 焊接检验  根据钢结构工程施工及验收规范的要求,焊口采用射线探伤法进行检验,检验比例为100%。 四.筒体制造工艺过程该筒体为圆形筒形,结构比较简单。筒体总长为5936mm,直径为600mm,分为四段筒节制造。由于筒节直径小于800mm,可以单张钢板制作

42、,筒节只有一条纵缝。各筒节开坡口,卷制成形,纵缝焊完后按焊接工艺组对环缝病焊接,然后进行射线探伤。最后编写工艺规程。具体见以下工艺文件装配工艺过程卡装配工艺过程卡产品型号产品图号产品名称筒体焊装零件名称工序号工序名称工序内容装 配部门设备及工艺装备辅助材料工时额定1下料按照尺寸用剪板机下取所需板料机加剪板机2卷制筒体在卷板机上卷出符合要求的圆筒机加卷板机3开坡口用铣刀铣出合理的的焊缝坡口机加铣刀4铆接用焊机对筒体焊缝和法兰进行铆接固定装配CO2气体保护焊机5矫形对筒体的直线度,平行度进行机械矫形装配氧乙炔加热器设计(日期)审核(日期)标准化(日期)会签(日期)标记处数更变文件号签字日期标记处数

43、更改文件号签字日期焊接工艺卡 焊接工艺卡产品型号产品名称筒体焊装零件图号零件名称 600 5936主要组成件序号图号名称材料件数1筒体Q345钢42法兰Q345钢2工序号工序内容设备工艺装备电压或气压电流焊条.焊丝.电极焊剂其他规范工时型号直径1纵缝的焊接半自动CO2气体保护焊机氧乙炔加热器38V310AH08Mn2Si8HJ4312检验射线探伤机3外缝环缝的焊接CO2气体保护焊机氧乙炔加热器38V280-450AH08Mn2Si8HJ4314法兰的焊接CO2气体保护焊机氧乙炔加热器38V280-450AH08Mn2Si8HJ431设计(日期)审核(日期)标准化(日期)会签(日期)标记处数更变文件号签字日期标记处数更改文件号签字日期结 论   按此焊接工艺措施施工,经过实际施工的验证,此焊接工艺措施不仅能在现场指导对Q345钢的焊接,而且能够保证焊接质量。  对Q345钢,是一种可焊性很好的钢材,采用埋弧焊丝H08MnA没有问题。只是焊剂,所用的SJ301属烧结焊剂,建议用熔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论