三角形“四心”向量表示_第1页
三角形“四心”向量表示_第2页
三角形“四心”向量表示_第3页
三角形“四心”向量表示_第4页
三角形“四心”向量表示_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角形四心的向量问题三角形重心、垂心、外心、内心向量形式的充要条件的向量形式一 知识点总结1)O是的重心;若O是的重心,则故;为的重心.2)O是的垂心;若O是(非直角三角形)的垂心,则故3)O是的外心(或)若O是的外心则故4)O是内心的充要条件是引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成 O是内心的充要条件也可以是若O是的内心,则故;的内心;向量所在直线过的内心(是的角平分线所在直线);二 范例(一)将平面向量与三角形内心结合考查ACBCCP例1O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的( )(A)外心(B

2、)内心(C)重心(D)垂心解析:因为是向量的单位向量设与方向上的单位向量分别为, 又,则原式可化为,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。(二)将平面向量与三角形垂心结合考查“垂心定理”例2 H是ABC所在平面内任一点,点H是ABC的垂心.由,同理,.故H是ABC的垂心. (反之亦然(证略)例3.(湖南)

3、P是ABC所在平面上一点,若,则P是ABC的(D)A外心B内心C重心D垂心解析:由. 即则所以P为的垂心. 故选D.点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合。(三)将平面向量与三角形重心结合考查“重心定理”例4 G是ABC所在平面内一点,=0点G是ABC的重心.证明 作图如右,图中连结BE和CE,则CE=GB,BE=GCBGCE为平行四边形D是BC的中点,AD为BC边上的中线. 将代入=0,得=0,故G是ABC的重心.(反之亦然(证略)例5 P

4、是ABC所在平面内任一点.G是ABC的重心.证明 G是ABC的重心=0=0,即由此可得.(反之亦然(证略)例6若 为内一点, ,则 是 的(     )A内心           B外心        C垂心          D重心解析:由得,如图以OB、OC为相邻两边构作平行四边形,则,由平行四

5、边形性质知,同理可证其它两边上的这个性质,所以是重心,选D。点评:本题需要扎实的平面几何知识,平行四边形的对角线互相平分及三角形重心性质:重心是三角形中线的内分点,所分这比为。本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合。(四)将平面向量与三角形外心结合考查例7若 为内一点,则 是 的(     )A内心           B外心      

6、;  C垂心          D重心解析:由向量模的定义知到的三顶点距离相等。故 是 的外心 ,选B。点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合。(五)将平面向量与三角形四心结合考查例8已知向量,满足条件+=0,|=|=|=1,求证 P1P2P3是正三角形.(数学第一册(下),复习参考题五B组第6题)证明 由已知+=-,两边平方得·=, 同理 ·=·=, |=|=|=,从而P1P2P3是正三角形.反之,若点O是正三角形P1P2

7、P3的中心,则显然有+=0且|=|=|.即O是ABC所在平面内一点,+=0且|=|=|点O是正P1P2P3的中心.例9在ABC中,已知Q、G、H分别是三角形的外心、重心、垂心。求证:Q、G、H三点共线,且QG:GH=1:2。【证明】:以A为原点,AB所在的直线为x轴,建立如图所示的直角坐标系。设A(0,0)、B(x1,0)、C(x2,y2),D、E、F分别为AB、BC、AC的中点,则有:AB(x1,0)C(x2,y2)yxHQGDEF由题设可设,即,故Q、G、H三点共线,且QG:GH=1:2【注】:本例如果用平面几何知识、向量的代数运算和几何运算处理,都相当麻烦,而借用向量的坐标形式,将向量的

8、运算完全化为代数运算,这样就将“形”和“数”紧密地结合在一起,从而,很多对称、共线、共点、垂直等问题的证明,都可转化为熟练的代数运算的论证。例10若O、H分别是ABC的外心和垂心.求证 .证明 若ABC的垂心为H,外心为O,如图.连BO并延长交外接圆于D,连结AD,CD.,.又垂心为H,AHCD,CHAD,四边形AHCD为平行四边形,故.著名的“欧拉定理”讲的是锐角三角形的“三心”外心、重心、垂心的位置关系:(1)三角形的外心、重心、垂心三点共线“欧拉线”;(2)三角形的重心在“欧拉线”上,且为外垂连线的第一个三分点,即重心到垂心的距离是重心到外心距离的2倍。“欧拉定理”的向量形式显得特别简单

9、,可简化成如下的向量问题.例11 设O、G、H分别是锐角ABC的外心、重心、垂心.求证 证明 按重心定理 G是ABC的重心 按垂心定理 由此可得 .补充练习1已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足= (+2),则点P一定为三角形ABC的 ( B )A.AB边中线的中点 B.AB边中线的三等分点(非重心)C.重心 D.AB边的中点1. B取AB边的中点M,则,由= (+2)可得3,即点P为三角形中AB边上的中线的一个三等分点,且点P不过重心,故选B.2在同一个平面上有及一点满足关系式: ,则为的 (  D  ) 外心 内心

10、C 重心 D 垂心2已知ABC的三个顶点A、B、C及平面内一点P满足:,则P为的 (  C  ) 外心 内心 C 重心 D 垂心3已知O是平面上一 定点,A、B、C是平面上不共线的三个点,动点P 满足:,则P的轨迹一定通过ABC的 (  C  ) 外心 内心 C 重心 D 垂心4已知ABC,P为三角形所在平面上的动点,且动点P满足:,则P点为三角形的 (  D   ) 外心 内心 C 重心 D 垂心5已知ABC,P为三角形所在平面上的一点,且点P满足:,则P点为三角形的 ( B   ) 外心 内心 C 重心 D 垂心6在三角形ABC中,动点P满足:,则P点轨迹一定通过ABC的: ( B ) 外心 内心 C 重心 D 垂心7.已知非零向量与满足(+)·=0且·= , 则ABC为( )A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形解析:非零向量与满足()·=0,即角A的平分线垂直于BC, AB=AC,又= ,A=,所以ABC为等边三角形,选D8.的外接圆的圆心为O,两条边上的高的交点为H,则实数m = 19.点O是三角形ABC所在平面内的一点,满足,则点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论