版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题:二次函数的图像(一)的教学设计一、设计理念本节课的设计注重教师向引导者、参与者、合作者的角色转变,让学生充分进行合作探究学习。我借助网络教室进行教学,用PPT进行教学演示,几何画板成为学生探究学习的工具。让学生以现有的信息技术水平借助几何画板作出函数的图象进行探究图象的相关性质,并明确信息技术是数学学习的辅助工具及有效的学习手段。二、教材分析研究二次函数,教材采用图象直观,非形式化的研究方式,理解抛物线的特点、性质;研究二次函数,应从简单到复杂,从特殊到一般入手,先由开始,然后是,最后是,;研究教材过程中,穿插了实际应用问题,例如:函数图象
2、与拱门拱桥、函数图象与隧道、函数图像与面积等,把图象直观与实际意义相联系,采用表格、表达式、图象等多种方法表示二次函数,让学生体会函数各种表示方法之间的联系和特点,以大量能表示为二次函数或利用二次函数知识可以解决的实际问题,提高学生的应用能力。本节共分2个课时,第1课时接着讨论形如,的二次函数的图象和性质,第2课时推导二次函数图象的对称轴和顶点坐标公式,并解决一些问题。本课时的重点是研究形如的二次函数,由时二次函数经过配方都可以写成的形式,因此本课时首先研究形如的二次函数的图象,为下一课时做好铺垫。三、学情分析前面函数的学习,学生已经经历借助几何画板软件作做出函数的图象及用描点法作出函数的图象
3、的过程,并经历对函数图象的观察、分析、探究,能从开口方向、对称轴、顶点坐标、增减性等方面有针对性的去研究函数的图象,理解函数的性质。通过对函数和的图象间关系的研究,基本具备了研究函数性质的一般方法。学生通过参与课堂教学活动,在培养良好情感态度的同时,也具备了一定的主动探索、合作意识和解快问题的能力。四、学习目标1、知识与技能能够作出和的图象,并能够理解它与的图象的关系,理解,和对二次函数图象的影响。能够正确说出的图象的开口方向、对称轴和顶点坐标。2、过程与方法经历探索二次函数的图象的作法和性质过程,掌握其应用。3、情感、态度与价值观培养合作、探究的思想,体会建立二次函数对称轴和顶点坐标公式的必
4、要性。五、重、难点教学重点:通过、图象的作法,体会并理解、与图象的关系。通过对、与图象的对比,理解,和对二次函数图象的影响。能根据函数表达式,说出其图象的开口方向、对称轴和顶点坐标。教学难点:体会并理解、与的图象之间的关系。能借助数形结合思想,正确表达的有关性质。六、教学过程(一)复习回顾1、二次函数的图象开口方向、对称轴和顶点坐标是什么?的图象呢?比较两者的联系。2、若将二次函数的图象向上平移2个单位,你能写出它的表达式吗?(学生得出表达式)3、若再将二次函数的图象向下平移4个单位,你能写出它的表达式吗?(二)创设情境:我们已经探讨过的图象与的图象之间的关系,的图象可以由的图象经过上下平移得
5、到。如果我们在的中间加上这一项,变成了,那它的图象与的图象又有什么关系呢?能不能把中间这一项通过变换化成我们已经熟悉的的形式呢?这两者又有什么关系?情境的设计,目的为引入本节课题,激发学生求知欲和探索意识,有利于学生知识的自主建构。不必对学生的回答作判断,只是让学生大胆猜测,主要是提出这节课要探究的内容。(三)自主探究1、你能说出二次函数的图象的对称轴和顶点坐标吗?引导学生通过配方的方法把化成的形式。2、猜想:的图象与的图象有什么关系?学生已经掌握的图象与的图象之间的关系,很容易得出:由的图象向上平移2个单位便得到的图象。3、的图象与的图象有什么关系?本环节的设计主要是让学生从陌生的的图象逐步
6、转化成熟悉的的图象,激发学生进行探究学习的兴趣。4、请你在同一坐标系中作出和的图象,并围绕着开口方向、对称轴、顶点坐标、图象之间的变换、增减性进行探究。让学生分小组在计算机上借助几何画板软件进行作图,并小组之间根据所作图象进行交流探究得出以上问题,同时提出不同见解。5、教师用PowerPoint制作出两个函数的图象投放在银幕上,学生结合自己所作图象及小组交流情况汇报结果。6、练习:的图象与的图象有什么关系?的图象向右平移3个单位,你能直接得出它的表达式吗?的图象与的图象有什么关系?让学生结合自己的探究结果进行解答,或借助几何画板作图解答。7、小结:的图象可以由的图象向上平移2个单位得到,的图象
7、又可以由的图象向右平移1个单位得到。那么的图象与的图象有什么关系?8、请你在同一坐标系中作出和的图象,并围绕着开口方向、对称轴、顶点坐标、图象之间的变换、增减性进行探究。让学生分小组在计算机上借助几何画板软件进行作图,并小组之间根据所作图象进行交流探究得出以上问题,同时提出不同见解。(四)收获小结二次函数的图象与的图象有什么关系?的图象可以看成的图象先沿轴整体左(右)平移个单位,当时,向右平移;当时,向左平移。再沿对称轴整体上(下)平移个单位,当时,向上平移;当时,向下平移。因此,二次函数的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与,和的值有关。(五)目标检测1、抛物线先向
8、 平移 个单位得到抛物线,再向 平移 个单位得到抛物线。2、的图象经过 得到的图象;的图象经过
9、 得到的图象;的图象经过 得到的图象;的图象经过 得到的图象。3、的图象,开口方向、对称轴、顶点坐标分别是什么?它的图象可由 &
10、#160; 的图象,经过 变换得到的?4、的图象与的图象有什么关系?5、写出下列抛物线的开口方向、对称轴和顶点坐标。 6、你会用什么方法得出抛物线的开口方向、对称轴和顶点坐标?问题6的设计主要让学生体会经历探索二次函数的图象的作法和性质过程,体会建立二次函数对称轴和顶点坐标公式的必要性,并为下一节课的学习做铺垫。七、设计意图本节课各个环节的设计,都以“
11、问题研究和学生活动”为中心,在探索新课之前,先回顾上一节课的内容:函数和的图象间关系。通过设计实际问题,使学生明确新旧知识之间的联系,特别是问题的设计,注重让学生感知二次函数的图象之间可以通过平移得到,初步感知运动思想,为本节课做好铺垫。新课前,设计情境导入:通过实例你能说出二次函数的图象的对称轴和顶点坐标吗?激发学生新旧知识之间的冲突。此问题是二次函数的一般形式,学生看到此问题是不知从何下手,教师再进一步引导,让学生通过配方的方法把一般式化成学生比较熟悉的的形式,再引导学生明确的形式与上一节课学习的的形式之间有什么联系?通过问题设计,把复杂问题逐步引向学生较熟悉的的图象与的图象有什么关系?从而进入新课,让学生借助几何画板作出这两个函数的图象,并围绕着开口方向、对称轴、顶点坐标、图象之间的变换、增减性进行探究。因为在上面的学习过程中,学生已经掌握了通过列表、描点、连线的方法作出函数的图象,所以在本节课中让学生借助几何画板进行作图象,比起原始的作图方法要省时、准确、形象,使学生有更多的时间进行探索图象的性质。通过让学生自己作图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年南阳市卧龙区招聘事业单位工作人员考试真题
- 高中开学第一课老师讲话5篇
- 音乐教师知识培训的总结范文5篇
- 绿色低碳节能环保演讲稿(3篇)
- 健康知识小调查
- 山地占用协议书
- 上海固定劳动合同续签规定
- 销售业务员工作总结范文
- 商业建筑机械施工合同模板
- 政府机关计划生育承诺书样本
- 2024年国际货物买卖FOB条款合同
- 2024-2025学年二年级上学期数学期中模拟试卷(苏教版)(含答案解析)
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 幼儿园教育和家庭教育的有效结合研究
- 集团公司两金管理评价办法
- 电影的声音分析PPT课件
- “三措一案”实施规范标准
- 【全面解读《国有建设用地使用权出让地价评估技术规范【2018】4号文》
- 案件移交清单模板
- 等差数列及其通项公式
- 【土木工程本科毕业设计】《混凝土结构》课程设计
评论
0/150
提交评论