版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第八章 糖代谢 自养生物 分解代谢 糖代谢包括 异养生物 自养生物 合成代谢 异养生物 能量转换(能源)糖代谢的生物学功能 物质转换(碳源)可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。分解代谢和合成代谢,受神经、激素、别构物调节控制。第一节 糖酵解 glycolysis一、 酵解与发酵1、 酵解 glycolysis (在细胞质中进行)酵解酶系统
2、将Glc降解成丙酮酸,并生成ATP的过程。它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。若供氧不足,NADH把丙酮酸还原成乳酸(乳酸发酵)。2、 发酵fermentation厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。O2葡萄糖 酵解丙酮酸 + NADH厌氧三羧酸循环乳酸发酵酒精发酵有些动物细胞即使在
3、有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。二、 糖酵解过程(EMP)Embden-Meyerhof Pathway ,1940在细胞质中进行1、 反应步骤P79 图 13-1 酵解途径,三个不可逆步骤是调节位点。(1)、 葡萄糖磷酸化形成G-6-P反应式此反应基本不可逆,调节位点。G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。催化此反应的激酶有,已糖激酶和葡萄糖激酶。激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。P 80 图13-2
4、己糖激酶与底物结合时的构象变化已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成,肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。(2)、 G
5、-6-P异构化为F-6-P 反应式:由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的断裂,形成三碳物是必需的。(3)、 F-6-P磷酸化,生成F-1.6-P反应式:此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶(4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)反应式:该反应在热力学上不利,但是,由于具有非常大的G0负值的F-1.6-2P的形成及后续甘油醛-3-磷
6、酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。该反应由醛缩酶催化,反应机理 P 83(5)、 磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛反应式:(注意碳原子编号的变化)由磷酸丙糖异构酶催化。已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P图解:(6)、 3-磷酸甘油醛氧化成1.3二磷酸甘油酸反应式:由磷酸甘油醛脱氢酶催化。此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。反应机理: P84 图 13-4 3-磷酸甘油醛脱氢酶的催化机理碘乙酸可与酶的-
7、SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)(7)、 13二磷酸甘油酸转化成3磷酸甘油酸和ATP反应式:由磷酸甘油酸激酶催化。这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。(8)、 3磷酸甘油酸转化成2磷酸甘油酸反应式:磷酸甘油酸变位酶催化,磷酰基从C3移至C2。(9)、 2磷酸甘油酸脱水生成磷酸烯醇式丙酮酸反应式:烯醇化酶2磷酸甘油酸中磷脂键是一个低能键(G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇
8、键是高能键(G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。(10)、 磷酸烯醇式丙酮酸生成ATP和丙酮酸。反应式:不可逆,调节位点。由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸EMP总反应式:1葡萄糖+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+2H+2H2O2、 糖酵解的能量变化 P87 图 13-5 糖酵解途径中ATP的生成无氧情况下:净产生2ATP(2分子NADH将2分子丙酮酸还原成乳酸)。有氧条件下:NADH可通过呼吸链间接地被氧
9、化,生成更多的ATP。 1分子NADH3ATP 1分子FAD 2ATP因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(+*)。甘油磷酸穿梭:2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。:胞液中磷酸甘油脱氢酶。:线粒体磷酸甘油脱氢酶。 罗纪盛P 259 P 260。苹果酸穿梭机制:胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸2酮
10、戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。 图苹果酸脱氢酶(胞液)酮戊二酸转位酶苹果酸脱氢酶(线粒体基质)谷草转氨酶GluAsp转位酶谷草转氨酶草酰乙酸:苹果酸:酮戊二酸:3、 糖酵解中酶的反应类型P88 表13-1 糖酵解反应氧化还原酶(1种):3磷酸甘油醛脱氢酶转移酶(4种):己糖激酶、磷酸果糖激酶、磷酸甘油酸激酶、丙酮酸激酶裂合酶(1种):
11、醛缩酶异构酶(4种):磷酸Glc异构酶、磷酸丙糖异构酶、磷酸甘油酸变位酶、烯醇化酶三、 糖酵解的调节参阅 P120 糖酵解的调节糖酵解过程有三步不可逆反应,分别由三个调节酶(别构酶)催化,调节主要就发生在三个部位。1、 已糖激酶调节别构抑制剂(负效应调节物):G6P和ATP别构激活剂(正效应调节物):ADP2、 磷酸果糖激酶调节(关键限速步骤)抑制剂:ATP、柠檬酸、脂肪酸和H+激活剂:AMP、F2.62PATP:细胞内含有丰富的ATP时,此酶几乎无活性。柠檬酸:高含量的柠檬酸是碳骨架过剩的信号。H+:可防止肌肉中形成过量乳酸而使血液酸中毒。3、 丙酮酸激酶调节抑制剂:乙酰CoA、长链脂肪酸、
12、Ala、ATP激活剂:F-1.6-P、四、 丙酮酸的去路1、 进入三羧酸循环2、 乳酸的生成在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。总反应: Glc + 2ADP + 2Pi 2乳酸 + 2ATP + 2H2O动物体内的乳酸循环 Cori 循环: 图肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。3、 乙醇的生成酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇
13、脱氢酶催化下,乙醛被NADH还原成乙醇。总反应:Glc+2pi+2ADP+2H+2乙醇+2CO2+2ATP+2H20在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。4、 丙酮酸进行糖异生五、 其它单糖进入糖酵解途径除葡萄糖外,其它单糖也可进行酵解P 91 图 13-6 各种单糖进入糖酵解的途径1糖原降解产物G1P2D果糖 有两个途径3D半乳糖4D甘露糖 第二节 三羧酸循环葡萄糖的有氧氧化包括四个阶段。糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH)丙酮酸氧化脱羧生成乙酰CoA三羧酸循环(CO2、H2O、ATP、NADH)呼吸链氧化磷酸化(NADH-ATP)
14、三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。原核生物:阶段在胞质中真核生物:在胞质中,在线粒体中一、 丙酮酸脱羧生成乙酰CoACH3COCOOH + CoA-SH + NAD+丙酮酸脱氢酶复合体CH3CO-S-CoA + NADH + H+ + CO21、 反应式:此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。2、 丙酮酸脱氢酶系丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。E.coli丙酮酸脱氢酶复合体:分子量:4.5×106,直径45nm,比核糖体稍大。 酶 辅
15、酶 每个复合物亚基数丙酮酸脱羧酶(E1) TPP 24二氢硫辛酸转乙酰酶(E2) 硫辛酸 24二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12此外,还需要CoA、Mg2+作为辅因子这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。3、 反应步骤P 93 反应过程(1)丙酮酸脱羧形成羟乙基-TPP(2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基(3)E2将乙酰基转给CoA,生成乙酰-
16、CoA(4)E3氧化E2上的还原型二氢硫辛酸(5)E3还原NAD+生成NADH4、 丙酮酸脱氢酶系的活性调节从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。(1)可逆磷酸化的共价调节丙酮酸脱氢酶激酶(EA)(可被ATP激活)丙酮酸脱氢酶磷酸酶(EB)磷酸化的丙酮酸脱氢酶(无活性)去磷酸化的丙酮酸脱氢酶(有活性)(2)别构调节ATP、CoA、NADH是别构抑制剂ATP抑制E1CoA抑制E2NADH抑制E35、 能量 1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。二、 三羧酸循环(TCA)的过程TCA循环:每轮循环有2个C原子以乙酰C
17、oA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。1、 反应步骤P95 图13-9 概述三羧酸循环(1)、 乙酰CoA+草酰乙酸柠檬酸反应式:柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。柠檬酸合酶上的两个His残基起重要作用:一个与草酰乙酸羰基氧原子作用,使其易受攻击;另一个促进乙酰CoA的甲基碳上的质子离开,形成烯醇离子,就可与草酰乙酸缩合成C-C键,生成柠檬酰CoA,后者使酶构象变化,使活性中心增加一个Asp残基,捕获水分子,以水解硫酯键,然后CoA和柠檬酸相继离开酶。氟乙酰
18、CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。 图氟乙酸本身无毒,氟柠檬酸是乌头酸酶专一的抑制剂,氟柠檬酸结合到乌头酸酶的活性部位上,并封闭之,使需氧能量代谢受毒害。它存在于某些有毒植物叶子中,是已知最能致死的简单分子之一。LD50 为0.2mg/Kg体重,它比强烈的神经毒物二异丙基氟磷酸的LD50小一个数量级。(2)、 柠檬酸异柠檬酸反应式:这是一个不对称反应,由顺鸟头酸酶催化P 101 图1312 顺乌头酸酶与柠檬酸的不对称结合顺乌头酸酶只能以两种旋光异构方式中的一种与柠檬酸结合,结果,它催化的第一步脱水反应中的氢全来自草酰乙酸部分,第二步的水合反应中的
19、OH也只加在草酰乙酸部分。这种酶与底物以特殊方式结合(只选择两种顺反异构或旋光异构中的一种结合方式)进行的反应称为不对称反应。结果,TCA第一轮循环释放的CO2全来自草酰乙酸部分,乙酰CoA羰基碳在第二轮循环中释放,甲基碳在第三轮循环中释放50%,以后每循环一轮释放余下的50%。柠檬酸上的羟基是个叔醇,无法进一步被氧化。因此,柠檬酸需转变成异柠檬酸,将不能被氧化的叔醇,转化成可以被氧化的仲醇。90%柠檬酸、4%顺乌头酸、6%异柠檬酸组成平衡混合物,但柠檬酸的形成及异柠檬酸的氧化都是放能反应,促使反应正向进行。(3)、 异柠檬酸氧化脱羧生成-酮戊二酸和NADH 反应式:这是三羧酸循环中第一次氧化
20、脱羧反应,异柠檬酸脱氢酶,TCA中第二个调节酶:Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。细胞在高能状态:ATP/ADP、NADH/NAD+比值高时,酶活性被抑制。线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。(4)、 -酮戊二酸氧化脱羧生成琥珀酰CoA和NADH反应式:-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢)(5)、 琥珀酰CoA生成琥珀酸和
21、GTP反应式:琥珀酰CoA合成酶(琥珀酸硫激酶)这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。(6)、 琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH反应式:琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。(7)、 延胡索酸水化生成L-苹果酸 反应式:延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。(8)、 L-苹果酸脱氢生成草酰乙酸和NADH 反应式:L-
22、苹果酸脱氢酶平衡有利于逆反应,但生理条件下,反应产物草酰乙酸不断合成柠檬酸,其在细胞中浓度极低,少于10-6mol/L,使反应向右进行。2、 TCA循环小结(1)、 三羧酸循环示意图(标出C编号的变化)P95 图13-9(2)、 总反应式:丙酮酸 + 4NAD+ + FAD + GDP 4NADH + FADH2 + GTP + 3CO2 + H2O乙酰CoA + 3NAD+ + FAD + GDP 3NADH + FADH2 + GTP + 2CO2 + H2O(3)、 一次底物水平的磷酸化、二次脱羧反应,三个调节位点,四次脱氢反应。3NADH、FADH2进入呼吸链(4)、 三羧酸循环中碳骨
23、架的不对称反应同位素标记表明,乙酰CoA上的两个C原子在第一轮TCA上并没有被氧化。被标记的羰基碳在第二轮TCA中脱去。在第三轮TCA中,两次脱羧,可除去最初甲基碳的50%,以后每循环一次,脱去余下甲基碳的50%u 问题:标记Glucose的第二位碳原子,跟踪EMP、TCA途径,C2的去向。3、 一分子Glc彻底氧化产生的ATP数量(在肝脏中)反应酶ATP消耗产生ATP方式ATP数量合计糖 酵 解已糖激酶1-18磷酸果糖激酶1-1磷酸甘油醛脱氢酶NADH呼吸链氧化磷酸化2×3磷酸甘油酸激酶底物水平磷酸化2×1丙酮酸激酶底物水平磷酸化2×1TCA丙酮酸脱氢酶复合物N
24、ADH2×330异柠檬酸脱氢酶NADH2×3-酮戊二酸脱氢酶复合物NADH2×3琥珀酸脱氢酶FADH22×2苹果酸脱氢酶NADH2×3琥珀酰CoA合成酶底物水平磷酸化2×1净产生:38ATP在骨骼肌、脑细胞中,净产生:36ATP甘油磷酸穿梭,1个NADH生成2个ATP苹果酸穿梭,1个NADH生成3个ATP4、 三羧酸循环的代谢调节参阅P122 图 13-26 三羧酸循环的调节(1)、 柠檬酸合酶(限速酶)受ATP、NADH、琥珀酰CoA及脂酰CoA抑制。受乙酰CoA、草酰乙酸激活(2)、 异柠檬酸脱氢酶NADH、ATP可抑制此酶ADP
25、可活化此酶,当缺乏ADP时就失去活性。(3)、 -酮戊二酸脱氢酶受NADH和琥珀酰CoA抑制。三、 TCA的生物学意义1、 提供能量线粒体外的NADH,可通过3-磷酸甘油穿梭和苹果酸穿梭机制,运到线粒体内,经呼吸链再氧化,这两种机制在不同组织的细胞中起作用。(1)、 磷酸甘油穿梭机制:磷酸二羟丙酮+NADH+H+3-磷酸甘油+NAD+3-磷酸甘油进入线粒体,将2H交给FAD而生成FADH2,FADH2可传递给辅酶Q,进入呼吸链,产生2ATP(3-磷酸甘油脱氢酶的辅酶是FAD)。(2)、 苹果酸穿梭机制:胞液中NADH可经苹果酸酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸-酮戊二酸载体转运,进入
26、线粒体,由线粒体内苹果酸脱氢酶催化,生成NADH和草酰乙酸,NADH进入呼吸链氧化,生成3ATP。(苹果酸脱氢酶的辅酶是NAD+)1分子Glc在肝、心中完全氧化,产生38ATP,在骨骼肌、神经系统组织中,产生36ATP。2、 TCA是生物体内其它有机物氧化的主要途径,如脂肪、氨基酸、糖3、 TCA是物质代谢的枢纽一方面,TCA是糖、脂肪、氨基酸等彻底氧化分解的共同途径,另一方面,循环中生成的草酰乙酸、-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是合成糖、氨基酸、脂肪酸、卟啉等的原料,因而TCA将各种有机物的代谢联系起来。TCA是联系体内三大物质代谢的中心环节,为合成其它物质提供C架。四、 T
27、CA的回补反应三羧酸循环中间物的的回补在TCA循环中,有些中间产物是合成其它物质的前体,如卟啉的主要碳原子来自琥珀酰CoA,Glu、Asp可以从-酮戊二酸和草酰乙酸衍生而成,一旦草酰乙酸浓度下降,则会影响TCA循环,因此这些中间产物必须不断补充,以维持TCA循环。产生草酰乙酸的途径有三个:(1)、 丙酮酸羧化酶催化丙酮酸生成草酰乙酸P102 反应式:丙酮酸羧化酶是一个调节酶,乙酰CoA可以增加其活性。需要生物素为辅酶(2)、 磷酸烯醇式丙酮酸羧化激酶催化磷酸烯醇式丙酮酸转化成草酰乙酸P102 反应式:在脑、心脏中存在这个反应。(3)、 Asp、Glu转氨可生成草酰乙酸和-酮戊二酸Ile、Val
28、、Thr、Met也会形成琥珀酰CoA,最后生成草酰乙酸。五、 乙醛酸循环三羧酸循环是所有生物共有的有氧化谢途径,某些植物和微生物除进行TCA外,还有一个乙醛酸循环,作为TCA的补充。循环途径:P 103 图13-13乙醛酸循环是通过一分子乙酰CoA和草酰乙酸缩合成柠檬酸,经异柠檬酸,由异柠檬酸裂解酶裂解成乙醛酸和琥珀酸。琥珀酸经脱氢、水化、脱氢生成草酰乙酸,补偿开始消耗掉的草酰乙酸。乙醛酸缩与另一分子乙酰CoA合成苹果酸,脱氢生成草酰乙酸。过量的草酰乙酸可以糖异生成Glc,因此,乙醛酸循环可以使脂肪酸的降解产物乙酰CoA经草酰乙酸转化成Glc,供给种子萌发时对糖的需要。植物中,乙醛酸循环只存在
29、于子苗期,而生长后期则无乙醛酸循环。哺乳动物及人体中,不存在乙醛酸循环,因此,乙酰CoA不能在体内生成糖和氨基酸。总反应:2乙酰CoA + NAD+ + 2H2O 琥珀酸 + 2CoA + NADH + 2H+第三节 磷酸已糖支路(HMS)也称磷酸戊糖途径,发生在胞质中。细胞内Glc的氧化分解,除通过糖酵解,三羧酸循环和发酵外,还能直接氧化分解。即反应开始,在G-6-P上的C2原子上直接氧化,通过一系列转化被分解,此为磷酸戊糖途径。两个事实:用碘乙酸和氟化物抑制糖酵解(磷酸甘油醛脱氢酶)发现Glc的消耗并不因此而受影响,证明葡萄糖还有其它的分解途径用14C分别标记Glc的C1和C6,然后分别测
30、定14CO2生成量,发现C1标记的Glc比C6标记的Glc更快、更多地生成14CO2 ,如果糖酵解是唯一的代谢途径,那么14C1和14C2生成14CO2的速度应该相同。一、 反应过程Glc经磷酸戊糖途径氧化分解可分为两个阶段。第一阶段:6-磷酸葡萄糖氧化脱羧生成5-磷酸核糖第二阶段:磷酸戊糖分子重排,产生不同碳链长度的磷酸单糖1、 6-磷酸葡萄糖脱氢脱羧生成5-磷酸核酮糖P104 反应式:在此氧化脱羧阶段中,Glc经两次脱氢,一次脱羧,生成5-磷酸核酮糖及NADPH。6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的调控酶,NADPH反馈抑制此酶活性。2、 磷酸戊糖异构生成5-磷酸核糖及5-磷酸木酮糖P10
31、5 反应式:5-磷酸木酮糖产率:2/35-磷酸核糖产率:1/33、 磷酸戊糖通过转酮、转醛反应生成酵解途径的中间产物(F-6-P,3-磷酸甘油醛)(1)、 转酮反应:P105反应式:5-磷酸木酮糖将自身的二碳单位(羟乙酰基)转到5-磷酸核糖的C1上,生成3-磷酸甘油醛和7-磷酸景天庚酮糖。转酮酶需TPP为辅酶,作用机理与丙酮酸脱氢酶中的TPP类似。(2)、 转醛反应P106 反应式:转醛酶将7-磷酸庚酮糖上的三碳单位(二羟丙酮基)转到3-磷酸甘油醛的C1上,生成4-磷酸赤鲜糖和6-磷酸果糖。(3)、 转酮反应(转酮酶)P107反应式:4-磷酸赤鲜糖接受另一分子5-磷酸木酮糖上的二碳单位(羟乙酰
32、基),生成6-磷酸果糖和3-磷酸甘油醛磷酸戊糖分子重排的总结果是:2个5-磷酸木酮糖 + 1个5-磷酸核糖 2个(F-6-P) + 1个3磷酸甘油醛由于5-磷酸木酮糖可以由5-磷酸核糖经差向酶转化而来,所以上式可写成:3个5-磷酸核糖 2个(F-6-P) + 1个3磷酸甘油醛。因此,在细胞中若形成过量的磷酸戊糖可以经磷酸戊糖途径转化为6-磷酸果糖及3-磷酸甘油醛,与糖酵解途径相连。二、 磷酸戊糖途径小结1、 通过此途径,可将G-6-P彻底氧化G-6-P + 12NADP+ + 6H2O 12NADPH + 12H+ + 6CO2 相当于(36-1)个ATP图 磷酸已糖支路第一阶段: 图第二阶段
33、 图2、 转酮酶(TPP)、转醛酶催化的反应是可逆的它们转移的是酮,受体是醛。转酮酶转移的是二碳单位(羟乙酰基),转醛酶转移的是三碳单位(二羟丙酮基)。3、 磷酸戊糖途径的中间产物,可进入糖酵解途径的中间产物中,反之亦可。主要是6-磷酸果糖和3-磷酸甘油醛。4、 碳的释放磷酸戊糖途径释放14C1在TCA循环中:先释放:C3、C4(丙酮酸脱羧)TCA第二轮后释放:C2、C5(乙酰CoA的羰基碳:CH3C*=O-CoA,100%)TCA第三轮后释放:C1、C6(乙酰CoA的甲基碳:*CH3C=O-CoA,每循环一轮释放50%)三、 磷酸戊糖途径的调节6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的限速酶,催化
34、不可逆反应。其活性主要受NADP+/NADPH比例的调节。机体内,NAD+/NADH为700,而NADP+/NADPH仅为0.014,这就使NADPH可以进行有效地反馈抑制调节6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶的活性。只有NADPH被生物合成消耗后,才能解除抑制。非氧化阶段戊糖的转变主要受控于底物的浓度。5-磷酸核糖过多时可以转化为6-磷酸果糖和3-磷酸甘油醛进行酵解。四、 磷酸戊糖途径与糖酵解途径的协调调节G-6-P的流向取决于对NADPH、磷酸戊糖及ATP的需要。(1)需要核糖-5-P(用于合成嘌呤核苷酸)的量比NADPH的量大得多时,大多数G-6-P转变成5-磷酸核糖。还可由转
35、酮酶、转醛酶催化,将2分子F-6-P和一分子甘油醛-3-P转变成3分子核糖-5-P。G-6-P + 2NADP+ +H2O 核糖-5-P + 2NADPH + 2H+2 果糖-6-P + 甘油醛-3-P 3 核糖-5-P(2)对NADPH和5-磷酸核糖的需要量平衡时,代谢就通过氧化阶段由G-6-P氧化脱羧,生成2个NADPH和1个核糖-5-P反应:G-6-P+2NADP+H2O核糖-5-P+2NADP+2H+CO2 (3)需要NADPH的量比5-磷酸核糖的量多得多时,G-6-P就完全氧化成CO2反应式:6(G-6-P)+12NADP+6H2O6(5-磷酸核糖)+12NADPH+12H+6CO2
36、生成的5-磷酸核糖通过非氧化重组及Glc异生作用,再合成G-P-6。G-6-P + 12NADP+ + 6H2O 12NADPH + 12H+ + 6CO2(4)需要 NADPH和 ATP更多时,G-6-P转化成丙酮酸磷酸戊糖途径3-磷酸甘油醛+6-磷酸果糖糖酵解3(G-6-P)+6NADP+5NAD+5Pi+8ADP5丙酮酸+6NADPH+5NADH2+8ATP+2H2O+8H+3CO2五、 磷酸戊糖途径的生理意义1、 产生大量的NADPH,为细胞的各种合成反应提供主要的还原力。NADPH作为主要的供氢体,为脂肪酸、固醇、四氢叶酸等的合成,非光合细胞中硝酸盐、亚硝酸盐的还原,及氨的同化等所必
37、需。哺乳动物的脂肪细胞和红细胞中占50%,肝中占10。2、 中间产物为许多化合物的合成提供原料产生的磷酸戊糖参加核酸代谢。4-磷酸赤藓糖与糖酵解中的磷酸烯醇式丙酮酸(PEP)可合成莽草酸,经莽草酸途径可合成芳香族a.a。3、 是植物光合作用中CO2合成Glc的部分途径4、 NADPH主要用于还原反应,其电子通常不经电子传递链传递,一般不用于ATP合成。如NADPH用于供能,需通过两个偶联反应,进行穿梭转运,将氢转移至线粒体NAD+上。胞液内:-酮戊二酸+CO2+NADPH+H+=异柠檬酸+NADP+异柠檬酸能自由通过线粒体膜,传递氢。线粒体内:异柠檬酸+NAD+=-酮戊二酸+CO2+NADH+
38、H+一分子Glc经磷酸戊糖途径,完全氧化,产生12分子NADPH,可生成(36-1)=35ATP第四节 糖醛酸途径P109糖醛酸途径:从G-1-P或G-6-P开始,经UDP-葡萄糖醛酸生成糖醛酸的途径。在肝脏中糖醛酸可与(毒素、药物等)含-OH、-COOH、-NH2、-SH基的异物(毒素、药物等)结合,生成可溶于水的化合物,随尿排出,具有解毒作用。一、 糖醛酸途径:P108 图13-15二、 糖醛酸的生理意义1. 在肝中糖醛酸与药物(含芳环的苯酚、苯甲酸)或含-OH、-COOH、-NH2、-SH基的异物结合成可溶于水的化合物,随尿、胆汁排出,起解毒作用。2. UDP糖醛酸是糖醛酸基的供体,用于
39、合成粘多糖(硫酸软骨素、透明质酸、肝素等)。3. 从糖醛酸可以转变成抗坏血酸(人及灵长动物不能,缺少L-古洛糖酸内酯氧化酶)4从糖醛酸可以生成5-磷酸木酮糖,可与磷酸戊糖途径连接。 第五节 糖的合成代谢糖的合成代谢有:光合作用 ,糖异生,单糖多糖,结构多糖的生物合成一、 光合作用:葡萄糖的生物合成卡尔文循环Calvin由CO2和H2O合成已糖,是绿色植物光合作用的基本过程合成动力(能量)是叶绿素吸收的光能。第一阶段:原初反应,吸收光能,并将光能转化成电能。第二阶段:电子传递和光合磷酸化。将电能转化成化学能,推动ATP和NADPH的合成,后两者称为同化力。同时水被分解放出O2。第三阶段:CO2的
40、固定和还原,又称CO2同化。利用同化力将固定在1、5二磷酸核酮糖(RuBP)上的CO2,通过一系列反应进行还原,最终产和F6P,再由此转化成果糖或Glc。卡尔文循环生成的中间产物,大多是3碳至7碳糖的磷酸酯。二、 糖的异生作用糖异生是指从非糖物质合成Glc的过程。植物利用光、CO2和H2O合成糖。动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。1、 糖异生的证据及生理意义证据:大鼠禁食24h,肝糖原由7%降至1%。再喂乳酸、丙酮酸或TCA中间产物,肝糖原会增加。意义:糖异生是一个十分重要的生物合成葡萄糖的途径。红细胞及大脑是以Glc为主要能量,成人每天需160克Glc,而其中120
41、克Glc用于脑代谢。糖异生主要在肝脏中进行,肾上腺皮质中也有,脑和肌肉细胞中很少。因此,在血中葡萄糖浓度降低时首先是脑受到伤害。2、 异生途径糖异生起源于细胞线粒体内。由丙酮酸生成Glc是糖异生的主要途径。P112 图1316 糖异生及降解途径。从丙酮酸到葡萄糖的糖异生途径不是糖酵解的简单逆转,因为在糖酵解中有3步是不可逆步骤,糖异生时必须饶过这3步:Glc到G-6-P ,F-6-P到F-1.6-P PEP到丙酮酸(1)、 丙酮酸被羧化成草酰乙酸(线粒体内)丙酮酸 + CO2 + ATP 草酰乙酸 + ADP丙酮酸羟化酶需要生物素为辅酶。人和哺乳动物的丙酮酸羧化酶主要存在于肝脏和肾的线粒体内,所以细胞液中的丙酮酸要经过运载载体进入线粒体后才能羧化成草酰乙酸。丙酮酸羧化酶还催化三羧酸循环的回补反应,所以,草酰乙酸既是糖异生的中间物,又是三羧酸循环的中间物,丙酮酸羧化酶联系着三羧酸循环和糖异生作用丙酮酸羧化酶是别构酶,受乙酰CoA和高比值ATP/ADP的激活。若细胞内ATP含量高,则三羧酸循环的速度降低,糖异生作用加强。(2)、 草酰乙酸被还原成苹果酸(线粒体内)草酰乙酸 + NADH + H+苹果酸脱氢酶苹果酸 + NAD+ 该反应的逆反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省温州市新希望联盟2024-2025学年上学期八年级期中考试数学试卷
- 高中生物 第6章 第4节 细胞的癌变教案 新人教版必修1
- 广东省肇庆市高中数学 第二章 随机变量及其分布 2.4 正态分布教案 新人教A版选修2-3
- 八年级生物上册 7.19.2植物的生长发育教案 (新版)苏科版
- 2023六年级数学上册 五 完美的图形-圆信息窗3 圆的面积第1课时教案 青岛版六三制
- 湖南省醴陵市七年级地理上册 5.2 国家经济合作教案 (新版)湘教版
- 2023一年级数学上册 8 20以内的进位加法第6课时 解决问题(2)教案 新人教版
- 2024-2025学年高中历史 第3单元 古代中国的科学技术与文学艺术单元小结与测评教案 新人教版必修3
- 租用空调合同模板(2篇)
- 银行抵押物租赁合同(2篇)
- 检维修交付生产手续(参考模板)
- SYB创业培训全课件(ppt)
- 危险化学品储存、经营企业专业检查表(长输管线)
- GB∕T 24694-2021 玻璃容器 白酒瓶质量要求
- (完整版)五年级数学思维拓展课程整体设计
- 下肢动脉硬化闭塞症临床路径
- 精装修验房最全表格
- 实例两点透视ppt课件
- 图解如何做好政务信息(办公室工作必备)(S)
- 中国中铁股份有限公司项目经理管理办法(试行)
- 污水处理站培训资料
评论
0/150
提交评论