高速DSP系统的电路板级电磁兼容性设计_第1页
高速DSP系统的电路板级电磁兼容性设计_第2页
高速DSP系统的电路板级电磁兼容性设计_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    高速DSP系统的电路板级电磁兼容性设计    高速DSP系统的电路板级电磁兼容性设计    类别:单片机/DSP      0 引言 印制线路板(PCB)提供电路元件和器件之间的电气连接,是各种电子设备最基本的组成部分,它的性能直接关系到电子设备质量的好坏。随着电子技术的发展,各种电子产品经常在一起工作,它们之间的干扰越来越严重,所以电磁兼容问题成为一个电子系统能否正常工作的关键。同样,随着PCB的密度越来越

2、高,PCB设计的好坏对电路的干扰及抗干扰能力影响很大。要使电子电路获得最佳性能,除了元器件的选择和电路设计之外,良好的PCB布线在电磁兼容性中也是一个非常重要的因素。 随着高速DSP技术的广泛应用,相应的高速DSP的PCB设计就显得十分重要。由于DSP是一个相当复杂、种类繁多并有许多分系统的数、模混合系统,所以来自外部的电磁辐射以及内部元器件之间、分系统之间和各传输通道间的串扰对DSP及其数据信息所产生的干扰,已严重地威胁着其工作的稳定性、可靠性和安全性。据统计,干扰引起的DSP事故占其总事故的90左右。因此设计一个稳定、可靠的DSP系统,电磁兼容和抗干扰至关重要。 1 DSP的电磁干扰环境

3、电磁干扰的基本模型由电磁干扰源、耦合路径和接收机3部分组成,如图1所示。 电磁干扰源包含微处理器、微控制器、静电放电、瞬时功率执行元件等。随着大量高速半导体器件的应用,其边沿跳变速率非常快,这种电路可以产生高达300 MHz的谐波干扰。耦合路径可以分为空间辐射电磁波和导线传导的电压与电流。噪声被耦合到电路中的最简单方式是通过导体的传递,例如,有一条导线在一个有噪声的环境中经过,这条导线通过感应接收这个噪声并且将其传递到电路的其他部分,所有的电子电路都可以接收传送的电磁干扰。例如,在数字电路中,临界信号最容易受到电磁干扰的影响;模拟的低级放大器、控制电路和电源调整电路也容易受到噪声的影响。 2

4、DSP电路板的布线和设计 良好的电路板布线在电磁兼容性中是一个非常重要的因素,一个拙劣的电路板布线和设计会产生很多电磁兼容问题,即使加上滤波器和其他元器件也不能解决这些问题。 正确的电路布线和设计应该达到如下3点要求: (1)电路板上的各部分电路之间存在干扰,电路仍能正常工作; (2)电路板对外的传导发射和辐射发射尽可能低,达到有关标准要求; (3)外部的传导干扰和辐射干扰对电路板上的电路没有影响。 21 元器件的布置 (1)元器件布置的首要问题是对元器件进行分组。元器件的分组原则有:按电压不同分;按数字电路和模拟电路分;按高速和低速信号分和按电流大小分。一般情况下都按照电压不同分或按数字电路

5、与模拟电路分。 (2)所有的连接器都放在电路板的一侧,尽量避免从两侧引出电缆。 (3)避免让高速信号线靠近连接器。 (4)在元器件安排时应考虑尽可能缩短高速信号线,如时钟线、数据线和地址线等。 22 地线和电源线的布置 地线布置的最终目的是为了最小化接地阻抗,以此减小从电路返回到电源之间的接地回路电势,即减小电路从源端到目的端线路和地层形成的环路面积。通常增加环路面积是由于地层隔缝引起的。如果地层上有缝隙,高速信号线的回流线就被迫要绕过隔缝,从而增大了高频环路的面积,如图2所示。 图2中高速线与芯片之间进行信号传输。图2(a)中没有地层隔缝,根据“电流总是走阻抗最小的途径”,此时环路面积最小。

6、图2(b)中,有地层隔缝,此时地环路面积增大,这样就产生如下后果: (1)增大向空间的辐射干扰,同时易受空间磁场的影响; (2)加大与板上其他电路产生磁场耦合的可能性; (3)由于环路电感加大,通过高速线输出的信号容易产生振荡; (4)环路电感上的高频压降构成共模辐射源,并通过外接电缆产生共模辐射。 通常地层上的隔缝不是在分地时、有意识地加上的,有时隔缝是因为板上的过孔过于接近而产生的,因此在PCB设计中应尽量避免该种情况发生。 电源线的布置要和地线结合起来考虑,以便构成特性阻抗尽可能小的供电线路。为了减小供电用线的特性阻抗,电源线和地线应该尽可能的粗,并且相互靠近,使供电回路面积减到最小,而

7、且不同的供电环路不要相互重叠。在集成芯片的电源脚和地脚之间要加高频去耦电容,容量为00101F,而且为了进一步提高电源的去耦滤波的低频特性,在电源引入端要加上1个高频去耦电容和1个110F的低频滤波电容。 在多层电路板中,电源层和地层要放置在相邻的层中,从而在整个电路板上产生一个大的PCB电容消除噪声。速度最快的关键信号和集成芯片应当布放在临近地层一边,非关键信号则布放在靠近电源层一边。因为地层本身就是用来吸收和消除噪声的,其本身几乎是没有噪声的。 23 信号线的布置 不相容的信号线之间能产生耦合干扰,所以在信号线的布置上要把它们隔离,隔离时采取的措施有: (1)不相容信号线应相互远离,不要平

8、行,分布在不同层上的信号线走向应相互垂直,这样可以减少线间的电场和磁场耦合干扰; (2)高速信号线特别是时钟线要尽可能的短,必要时可在高速信号线两边加隔离地线; (3)信号线的布置最好根据信号流向顺序安排,一个电路的输入信号线不要再折回输入信号线区域,因为输入线与输出线通常是不相容的。 当高速数字信号的传输延时时间Td>Tr(Tr为信号的脉冲上升时间)时,应考虑阻抗匹配问题。因为错误的终端阻抗匹配将会引起信号反馈和阻尼振荡。通常线路终端阻抗匹配的方法有串联源端接法、并联端接法、RC端接法、Thevenin端接法4种。 (1)串联源端接法 图3为串联源端接电路。 源端阻抗Zs和分布在传输线

9、上的阻抗Zo之间,加上源端接电阻Rs,用来完成阻抗匹配,Rs还能吸收负载的反馈。这里的Rs必须离源端尽可能的近,理论上应为Rs=Zo-Zs中的实数值。一般Rs取1575。 (2)并联端接法 图4为并联端接电路。附加1个并联端电阻Rp,这样Rp与ZL并联后就与Zo相匹配。这个方法需要源驱动电路来驱动一个较高的电流,能耗很高,所以在功耗小的系统中不适用。 (3)RC端接法 图5为RC端接电路。该方法类似于并联端接电路,但引入了电容C1,此时R用于提供匹配Zo的阻抗。C1为R提供驱动电流并过滤掉从传输线到地的射频能量。因此与并联端接方法相比,RC端接电路需要的源驱动电流更少。R和C1的值由Zo,Tpd(环路传输延迟)和终端负载电容值Cd决定。时间为常数,RC=3Tpd,其中RZL=Zo,C=C1Cd。 (4)Thevenin端接法 图6为Thevenin端接电路。该电路由上拉电阻R1和下拉电阻R2组成,这样就使逻辑高和逻辑低与目标负载相符。其中,R1和R2的值由R1R2=Zo决定,R1+R2+ZL的值要保证最大电流不能超过驱动电路容量。 3 结语 本文通过对电子产品电磁环境的分析,确定高速DSP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论