基于TL494的开关电源设计_第1页
基于TL494的开关电源设计_第2页
基于TL494的开关电源设计_第3页
基于TL494的开关电源设计_第4页
基于TL494的开关电源设计_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、安徽财贸职业学院毕业设计毕业设计报告书设计题目: 基于TL494的开关电源制作系 部:电子信息系专 业:新能源应用技术班 级:能源1001基于TL494的12V开关电源制作摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人 们的工作、生活的关系日益密切。近年来,随着功率电子器件(如GTR MOSFET) PW眼术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。 该电 路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开 关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温 升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、

2、视频音响、家用 电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多,常用的变 换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET作为开关管,可以提高电源变压器的工作 效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。瓶徐润属钞瘗麻5尻赖。关键词:直流磁偏自激振荡TL494安徽财贸职业学院毕业设计目录第1章开关电源基础技术第tw爵跪爱也谴净。1.1 开关电源概述俄、楼静铸瀚湃淑®I。1.1.1 开关电源的工作原理 ir钢极镇桧猪锥。1.1.2 开关电源的组成 2军贸摄尔霁毙撰砖卤尻。1.1.3 开关电源的特

3、点 第养技箧®?志类蒋番1.2 关电源典型结构31礴恳蹒骈畤翥继骚。1.2.1 串联开关电源结构 3茕桢广鲫一选块网糊目。1.2.2 并联开关电源结构勰娅尽揖鹤惨魔茏(。第2章 开关电源主控元件 6为丛妈翅为赡债蛭练济2.1 功率晶体管(GTR 6Km圣横蕨龈讶骅汆。2.1.1 功率晶体管的结构 6彩呛俨匀谓鳖调砚金帛。2.1.2 功率晶体管的工作原理7播林卜泻/圣骋贝兄!雕2.1.3 功率晶体管的特性与参数 7施凤袜备鄱®轮烂蔷。2.2 电力场效应晶体管(MOSFEET81m俣阍蕨圄阊邺钱®I。2.2.1 电力场效应晶体管特点8坛搏乡it忏篓锲铃测2.2.2 M

4、OSFET的结构和工作原理 8蜡燮宰艮帐铉锚金市赘。第3章 开关电源中的TL494 10O而皤昙JW遥闫撷凄。3.1 TL494的内部功能1俵铺WO1鹏踪韦输翟。3.2 TL494的特点1胭颜震彦决绥I1饴3E锦。3.3 TL494的工作原理11猫蚕I!绘!OB朱髅既尻。3.4 TL494内部电路1200迳琐箝奥鸥娅番第4章 开关电源的原理图设计 14菁氽彘颗(饨芹龈话鹫。4.1 交流滤波设计 145峰隔槿跳相翱!僦荥。4.2 整流桥电路设计1隼侧部!绛解旬融盛t4.3 半桥逆变和全波整流设计16楠金昆缢雕!嗜俨贵4.4 变压器电路设计 16Bm劳肉皆痫嫦胫汆。4.5 主控电路设计 17、鹄箱

5、灭萦欢;鹫球4.6 滤波电路设计 1濠胃输出襁金甲汾雇统厚第5章组装与调试5.1 开关电源的组装1的噜脚富贸恳弹滤颔杲。5.2 开关电源的调试总结致谢21阐官爵t迳醇啸重是凉。22辞担谄动律泻类短III安徽财贸职业学院毕业设计第1章开关电源基础技术1.1 开关电源概述1.1.1 开关电源的工作原理开关电源的工作原理图如图1-1所示;图中输入的直流不稳定电压 U经开关S加至 输出端,S为受控开关,是一个受开关脉冲控制的开关调整管。使开关S按要求改变导通或断开时间,就能把输入的直流电压U变成矩形脉冲电压。这个脉冲电压经滤波电路 进行平滑滤波就可得到稳定的直流输出电压 U0O啜觐言圭缘锡嗫函端铸。图

6、1-1开关电源的工作原理(a)为原理性电路图,(b)为波形图为方便分析开关电路,定义脉冲占空比如下:D -TON(1-1)式中T表示开关S的开关重复周期;TON表示开关S在一个开关周期中的导通时间 开关电源直流输出电压U0与输入电压U之间有如下关系:UO=UiD(1-2)由(1-2)式可以看出,若开关周期T 一定,改变开关S的导通时间TON,即可改变脉 冲占空比D,达到调节输出电压的目的。T不变,只改变TON*实现占空比调节的方式叫 做脉冲宽度调制(PWM)由于PWMW勺开关频率固定,输出滤波电路比较容易设计,易 实现最优化,所以PWMK开关电源用得较多。若保持 TON变,利用改变开关频率f=

7、1/T 实现脉冲占空比调节,从而实现输出直流电压U0稳压的方法,称做脉冲频率调制(PFM)方式开关电源。由于开关频率不固定,所以输出滤波电路的设计不易实现最优化。既改变Ton,又改变T,实现脉冲占空比的调节的稳压方式称做脉冲调频调宽方式。在各种开关电源中,以上三种脉冲占空比调节方式均有应用。受绐剧幅龈库。1.1.2 开关电源的组成开关电源由以下四个基本环节组成,见图 1-2所示。其中DC/DC变换器用以进行功 率变换,是开关电源的核心部分;驱动器是开关信号的放大部分,对来自信号源的开关 信号放大,整形,以适应开关管的驱动要求;信号源产生控制信号,由它激或自激电路 产生,可以是PWM1号,也可以

8、是PFM信号或其它信号;比较放大器对给定信号和输出 反馈信号进行比较运算,控制开关信号的幅值,频率,波形等,通过驱动器控制开关器 件的占空比,达到稳定输出电压值的目的。除此之外,开关电源还有辅助电路,包括启 动电路、过流过压保护、输入滤波、输出采样、功能指示等。11渍峥阅剜螂建藏。DC/DC变换器有多种电路形式,其中控制波形为方波的 PWME换器以及工作波形为 准正弦波的谐振变换器应用较为普遍。封忧蒋如晓年膜悯鹫。开关电源与线性电源相比,输入的瞬态变换比较多地表现在输出端,在提高开关频 率的同时,由于反馈放大器的频率特性得到改善,开关电源的瞬态响应指标也能得到改 善。负载变换瞬态响应主要由输出

9、端 LC滤波器的特性决定。所以可以通过提高开关频 率、降低输出滤波器LC的方法改善瞬态响应态。颖刍堇蟆悖亿顿裳赔沈。UiUo图1-2电源基本组成框图DC/DC变换器1.1.3 开关电源的特点1 .效率高:开关电源的功率开关调整管工作在开关状态,所以调整管的功耗小,效 率高,一般在80%-90% 高的可达90犯上。温网詹理糕隅t腑聪。2 .重量轻:由于开关电源省掉了笨重的电源变压器, 节省了大量的漆包线和硅钢片, 电源的重量只有同容量线性电源的 1/5 ,体积也大大缩小。龈懒跻鳗鸿镒脚加3 .稳压范围宽:开关电源的交流输入电压在 90270V范围变化时,输出电压的变 化在±2%Z下。合

10、理设计电路,还可使稳压范围更宽,并保证开关电源的高效率。挤牖§电爰结疑哓类。4 .可靠安全:在开关电源中,由于可以方便的设置各种形式的保护电路,所以当电 源负载出现故障时,能自动切断电源,保护功能可靠。赔旗申谄觎聚辽靳末金卷。5 .功耗小:由于功率开关管工作在开关状态,损耗小,不需要采用大面积散热器, 电源温开低,周围元件不致因长期工作在高温环境而损坏,所以采用开关电源可以提高 整机的可靠性和稳定性。胤疑黜羞决穗赛金卜ffl电1.2关电源典型结构1.2.1 串联开关电源结构串联开关电源工作原理的方框图如图1-3所示;功率开关晶体管 VT串联在输入与输出之间。正常工作时,功率开关晶体管

11、VT在开关驱动控制脉冲的作用下周期性地在导通、截止之间交替转换,使输入与输出之间周期性的闭合与断开。输入不稳定的直流 电压通过功率开关晶体管 VT后输出为周期性脉冲电压,再经滤波后,就可得到平滑直 流输出电压U。U0和功率开关晶体管VT的脉冲占空比D有关,见式(12)。裳1祕颤谚 剑芈蔺。图1-3串联开关电源原理图输入交流电压或负载电流的变化,会引起输出直流电压的变化,通过输出取样电路 将取样电压与基准电压相比较,误差电压通过误差放大器放大,控制脉冲调宽电路的脉 冲占空比D,达到稳定直流输出电压U0的目的。 仓姬世嘱珑言古鹫。1.2.2并联开关电源结构并联开关电源工作原理方框图如图 1-4所示

12、,功率开关晶体管 VT与输入电压、输 出负载并联,输出电压为:1U0=U(1-3)1 - D图1-4为一种输出升压型开关电源,电路中有一个储能电感,适当利用这个储能电感, 可将并联开关电源转变为广泛使用的变压器耦合并联开关电源。绽郁螂娱削曲缔图1-4并联开关电源原理图变压器耦合并联开关电源工作框图如图 1-5所示;功率开关晶体管 VT与开关变压 器初级线圈相串联接在电源供电输入端, 功率开关晶体管VT在开关脉冲信号的控制下, 周期性地导通与截止,集电极输出的脉冲电压通过变压器耦合在次级得到脉冲电压,这 个脉冲电压经整流滤波后得到直流输出电压 U0o同样经过取样电路将取样电压与基准电 压UE进行

13、比较被误差放大器放大,由误差放大器输出至功率开关晶体管VT,通过控制功率开关晶体管VT的导通、截止达到控制脉冲占空比的目的,从而稳定直流输出电压。 由于采用变压器耦合,所以变压器的初、次级侧可以相互隔离,从而使初级侧电路地与 次级侧电路地分开,做到次级侧电路地不带电,使用安全。同时由于变压器耦合,可以 使用多组次级线圈,在次级得到多组直流输出电压。骁顾烽翳鼐B翰®图1-5变压器耦合并联开关电源原理图输出稳定*取样电路19第2章开关电源主控元件2.1 功率晶体管(GTR2.1.1 功率晶体管的结构晶体管目如图达林顿NPNft率晶体管就是将几只单个晶体管在元件内部做成射极跟随器, 模块是

14、指将几级达林顿晶体管集成在一起,对外构成一定电路形式的一个组合单元, 前功率晶体管模块的电流/电压已达1000V/1200V。功率晶体管内部结构和图形符 2-1所示,功率晶体管模块如图 2-2所示:51针煤暧惮银缩凉。图2-1功率晶体管内部结构和图形符号C1(a)(b)图2-2功率晶体管模块(a)单管模块电路;(b)双管模块电路2.1.2 功率晶体管的工作原理功率晶体管和小信号晶体管一样都有电压和电流放大的重要功能,基本原理类似, 都是电流控制双极型器件。对于共射极电路,基极注入一定的基极电流Ib,器件进入“开 通”的饱和状态,集电极电流Ic产生,集电极和发射极之间的压降 UCES就很低;基极

15、 电流Ib消失或者注入一定的反向电流,器件立刻进入“关断”的截止状态,集电极电流 Ic为零,集电极和发射极之间能承受较高的电压 Uceo。功率晶体管的电流放大倍数B是 在一定条件下测定的,使用条件不同,电流放大倍数B就不同。一般来说,集电极电流Ic越小,电流放大倍数B就大;集电极电流Ic越大,电流放大倍数B就小。对于单只功 率晶体管而言,晶体管集电极Ic达到元件额定电流一半以上时,电流放大倍数B明显下 降,一般会下降到6=810。因此功率晶体管在一定要求的基极脉冲电流 Ib的作用下, 就能够在开通过程、导通状态、关断过程、截止状态四种不同阶段中转换,完成功率晶 体管开关的动作。金留诗浬艳损楼期

16、覆像其2.1.3 功率晶体管的特性与参数1 .功率晶体管输出Ic-Uce。功率晶体管共射极电路输出特性Ic-Uce如图2-3所示,有截止区、线性区、准饱和区、深饱和区组成,分别对应不同的基极驱动电流Ib。栉缎欧锄种it瑶镂。图2-3功率晶体管共射极电路输出特性饱和压降Uces是在一定的基极驱动电流Ib,功率晶体管处于饱和状态下,集电极 和发射极之间的电压。饱和度越深,饱和压降 Uces越小,导通损耗越小,但是导致关 断过程中退出饱和的时间延长。 辔惮楝刚殓撰瑶丽阉应O一般来说,应用于开关状态的功率晶体管在导通在导通状态集电极电流Ic大,饱和压降Uces小,截止状态集电极电流就是漏电流,Iceo

17、小,集电极和发射极之间的电压 Uce高,截止损耗Poff=IceoUce小,加上开通过程和关断过程的开关损耗小,因此开关 状态的功率晶体管总损耗比应用在线性区功率晶体管损耗P=IcUce小。崛扬福创辐浸兴涣氤2 .功率晶体管的开关特性反应功率晶体管在开通过程、导通状态、关断过程、截止 状态四个阶段中动作的快慢特点和时间参数。如图所示功率晶体管的开关特性,有延迟 时间td、上升时间tr、存储时间ts、下降时间tf组成,其中导通时间ton有延迟时间td、 上升时间tr组成,关断时间tof有存储时间ts、下降时间tf组成。为了加快功率晶体管 的开关过程,必须优化基极驱动电流脉冲。爵叁港内烬忧毁厉饿警

18、。3 .功率晶体管最大额定值表示功率晶体管极限参数,主要有集电极允许通过的最大 电流Icm ,集电极最大允许耗散功率 Pcm ,最大允许结温Tjm,晶体管击穿电压Uceo、 Ucbo、Ueboo Uceo是基极开路、集电极-发射极间的击穿电压:Ucbo是发射极开路、集 电极-基极间的击穿电压;Uebo是集电极开路、发射极-基极间的击穿电压。一般来讲, 晶体管在应用中任何时候都不允许超过极限参数。则端隔缪澧晖园栋沈。2.2电力场效应晶体管(MOSFET2.2.1 电力场效应晶体管特点电力场效应晶体管简称电力 Power Mosfet。特点是用栅极电压来控制漏极电流, 驱动电路简单,需要的驱动功率

19、小,开关速度快,工作频率高,热稳定性好。但是电流容量小,耐压低,一般适用于功率不超过10kW勺电源电子装置。胀鳗弹奥秘舔户挛钮聪。2.2.2 MOSFET的结构和工作原理电力MOSFET种类按导电沟道可分为P沟道和N沟道,图2-4所示为N沟道结构电力MOSFET勺工作原理是:在截止状态,漏源极问加正电源,栅源极问电压为零。P基区与N漂移区之间形成的PN结反偏,漏源极之间无电流流过。在导电状态,即当UGS 大于开启电压或阈值电压UT时,栅极下P区表面的电子浓度将超过空穴浓度, 使P型半 导体反型成N型而成为反型层,该反型层形成 N沟道而使PNS消失,漏极和源极导电。鳏收祷和诵帮废捕减。f SDD

20、'DN沟道P沟道(a)内部结构断面示意图(b)电气图形符号图2-4电力MOSFET勺结构和电气图形符号MOSFE开关时间在10100ns之间,工作频率可达100kHz以上,是电力电子器件中最 高的。由于是场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放 电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。薪戢I赈维卿dTWU第3章开关电源中的TL4943.1 TL494的内部功能TL494是美国德州仪器公司生产的电压驱动型脉宽调制器,在显示器、计算机等系 统电路中作为开关电源电路,TL494的输出三极管可接成共发射极及射极跟随器两种方 式,因而可以选择双端推挽输

21、出或单端输出方式,在推挽输出方式时,它的两路驱动脉 冲相差180度,而在单端方式时,其两路驱动脉冲为同频同相。内部功能如图3-1所示。 其引脚功能如下:1、2脚分别为误差比较放大器的同相输人端和反相输人端。3脚为控制比较放大器和误差比较放大器的公共输出端,输出时表现为或输出控制特性,也就是 就在两个放大器中,输出幅度大者起作用。当3脚的电平变高时,TL494送出的驱动脉冲宽度变窄,当3脚电平低时,驱动脉冲宽度变宽。4脚为死区电平控制端,从4脚加 入死区控制电压可对驱动脉冲的最大宽度进行控制,使其不超过180度,这样可以保护开关电源电路中的三极管。5、6脚分别用于外接振荡电阻和电容。7脚为接地端

22、。8、9 脚和11、12脚分别为TL494内容末级两个输出三极管的集电极和发射极。12脚为电源 供电端。13脚为功能控制端。14脚为内部5V基准电压输出端。15、16脚分别为控制 比较放大器的反相输人端和同相输人端。麟1例鞋fBt呜旧指第3.2 TL494的特点TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广 泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO16和PDIP-16两种封装形式,以适应不同场合的要求。 TL494能产生PWM,能调整频率和脉宽,还 有一路基准电压,这些都满足 DC-DC的条件,采用不同拓扑,得到升压和降压,采用 推挽(pu

23、sh-pull)方式,升压,可以改变反馈电阻,得到其他电压;采用 BUCK拓扑降 压,可以改变反馈电阻,得到其他电压,如图 3-1所示: 加粥建整11楮阍氤E1 E2 C2 Vcc CON Vref IN- IN+910111213141516TL 49412345678IN+ IN- FB T Ct Rt GND C1图3-1 TL494外形图TL494其他主要特点如下:集成了全部的脉宽调制电路;片内置线性锯齿波振荡器; 外置振荡元件仅两个(一个电阻和一个电容);内置误差放大器;内止5V参考基准电压 源;可调整死区时间;内置功率晶体管可提供500mA的驱动能力;推或拉两种输出方式。钢H禹Uf

24、et荣产涛困蔺。3.3 TL494的工作原理TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率 可通过外部的一个电阻和一个电容进行调节, 输出脉冲的宽度是通过电容 CT上的正极 性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管V1和V2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信 号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。控制信号由集成电路外 部输入,一路送至死区时间比较器,一路送往误差放大器的输人端。死区时间比较器具 有120mV的输人补偿电压,它限制了最小输出死区时间约等于锯齿波周期的 4%,当输 出

25、端接地,最大输出占空比为 96%,而输出端接参考电平时,占空比为 48%。当把死 区时间控制输入端接上固定的电压(范围在 0 3.3V之间)即能在输出脉冲上产主附 加的死区时问。脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反 馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下 降到零。两个误差放大器具有从-0.3V到(VCC-2.0)的共模输入范围,这可能从电源的 输出电压和电流获得。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相 输人端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可决定控制回路。,卜懿磅惬触乐鹏烬解鼠当比较

26、器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触 发器进行计时,同时停止输出管 V1和V2的工作。若输出控制端连接到参考电压源, 那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作 于单端状态,且最大占空比小于 50%时,输出驱动信号分别从晶体管 V1或V2取得。 输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱 动电流输出,亦可将V1和V2并联使用,这时,需将输出模式控制脚接地以关闭双稳 触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的

27、负载电流,在典型的070oC温度范围50mV温漂条件下,该基准电压源能提供 ±15%的精确度。TL494的测试波形 如图3-2所示。TL494若将13脚与14脚相连.可形成推挽式工作;若将 13脚与7脚 相连.可形成单端输出方式。为增大输出可将 2个三极管并联。言曼饱兖争音播船癞别激5脚3脚电平4脚电平比毂侬十 输出比较2 输出S卿11 W图3-2 TL494的测试波形3.4 TL494内部电路TL494是一种电压控制模式的PWM控制和驱动集成电路芯片,由于它具有两路相 位相差180°的PWM驱动信号输出,因此被广泛的应用与单端式(正极式和反极式) 和双端式(半桥式、全桥式

28、和推挽式)开关稳压电源电路。总体结构比同类集成电路 SG3524更完善。TL494内部电路框图见图3-3。吊铉俯欤谦鸽饺竞荡赚。1 .内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率:(3-1)1.1 f RC式中,f单位为KHz, R的单位为kQ, C的单位为 £ 其最高振荡频率为300KHz, 能驱动双极型开关管或MOSFET管。莹谐龌组ft绚t减。2 .内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平, 通过其输出电平使触发器翻转换,控制两路输出之间的死区时间。当脚输出电平升高 时,死区时 间增大。 麸肃鹏铺轿感镣缚褥耀。3 .触发器的两路输出设有控制

29、电路,使内部 2只开关管既可输出双端时序不同的驱 动脉冲,驱动推挽开关电路和半桥开关电路,也可输出同相序的单端驱动脉冲,驱动单 端开关电路。纳畴鳗呐股前®腻鳌镂。4 .内部两组完全相同的误差放大器,其同相输入端和反相输入端均被引出芯片外, 因此可以自由设定其基准电压,以方便用于稳压取样,或用其中一种作为过压、过流的 超阈值保护。凰撵鲍猫铁频钙蓟纠庙。5 .输出驱动电流单端达到400mA能直接驱动峰值开关电流达5A的开关电路。双端输出为2X200mA加入驱动级即能驱动近千瓦的推挽式和半桥式电路。若用于驱动 MOS FET管,则需另加入灌流驱动电路。 灭暧骇猎例就叟孤第4章开关电源的原理

30、图设计4.1 交流滤波设计在交流滤波电路设计中,热敏电阻 RT1是负温度系数(NTC热敏电阻。电阻随温 度升高而减小。在L、N两根线上存在着干扰,当两根线上的波形完全一致时(幅值和 相位相同),我们称之为共模干扰,当波形相反时(幅值和相位相反)称之为差模干扰。 由于产生的因素是不确定的,无法预测的,所以我们要尽量消除干扰的存在。消除共模 干扰可以通过L1、C2、C3来实现,消除差模干扰可以通过 C1、C4来实现。由于在电路 中存在着斜波成分,所以在 R13两侧并联一个C1,来滤除交流电中的斜波成分,C2, C3 起着通直流阻交流的作用,在 C2和C3两侧并联一个C4来消除电源中的高频成份 C2

31、8 的作用是滤除地受隔离干扰情况下的交流成分。 交流滤波电路设计原理图如图4-1所示: 镑鹏饷£伍镖赞浑H骚。1U3 1KV图4-1交流滤波电路图T工匕!-.二三 口二话OMOS4.2 整流桥电路设计整流桥堆产品是由四只整流硅芯片作桥式连接,外用绝缘朔料封装而成,大功率整 流桥在绝缘层外添加锌金属壳包封,增强散热。它分为全桥和半桥。全桥由四只二极管 组成,有四个引出脚。两只二极管负极的连接点是全桥直流输出端的“正极”,两只二极管正极的连接点是全桥直流输出端的“负极”。半桥由两只二极管组成,有三个引出 脚。正半桥两边的管脚是两个二极管的正极,即交流输入端;中间管脚是两个二极管的 负极,

32、即直流输出端的“正极”。负半桥两边的管脚上两个二极管的负极,即交流输入端;中间管脚是两个二极管的正极,即直流输出端的“负极”。一个正半桥和一个负半桥就可以组成一个全桥。它的最大整流电流从 0.5A到100A,最高反向由!值电压从50V 到1600V。本电路设计所采用的是半桥电路,它的作用就是将交流变成直流。桥堆电路 如图4-2所示: 携频噪南露念谴Pffi泸。围为1.21.4)输出波形如图4-3所示:4.3 半桥逆变和全波整流设计如图4-4所示:R1和R2起到均压的作用,C7的作用是消除半桥电路中可能出现 的直流磁偏。C10使V1瞬间达到饱和状态,施加反向电压将会。R5和R39起到自激振 荡作

33、用。R3和C8构成阻容吸收电路,抑制一次侧绕组产生的感应电动势。V1和V2不能同时导通,否则直流侧短路,所以要引入一个“死去电压”。当V1导通时,一次侧 能量增加E1,当V2导通时,一次侧能量增加 E2,在数值上我们总是希望 E1=E2。一 个周期的积累量:£ £2-E1。那么,N个周期积累的能量就为N/XE,当某个周期来临时,就会大于它的最大储存能量,这样就达到了磁通饱和。撤展雏纨颗锌讨跃满雕R6IN41S1IN-1181clo4LUF 曲 V 15OKO5W不。R53.9K-(125WR4150KO -W15L2O25WRli>R40RM15OR.'O.5

34、W1?OK/K>,5W750V2.2M.5WRH.R9J.9K.0.15W图4-4半桥逆变和全波整流电路4.4 变压器电路设计变压器是一种静止的电气设备,根据电磁感应原理,将一种形态(电压、电流、相数)的交流电能,转换成另一种形态的交流电能。当一个正弦交流电压Ui加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通 型,它沿着铁芯穿过初级线圈和次 级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时 曲也会在初级线圈上安徽财贸职业学院毕业设计感应出一个自感电势Ei, Ei的方向与所加电压Ui方向相反而幅度相近,从而限制了 Ii 的大小。为了保持磁通 币的存在就需要有一定的电能消

35、耗,并且变压器本身也有一定 的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为空载电流”。 夹蝶闾辑鼠档蓦迁镂减。如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通 也,曲的方向与 出 相反,起了互相抵消的作用,使铁芯中总的磁通量有所减少,从而使初级自感电压Ei减少,其结果使Ii增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时 Ii增加,曲也增加,并且 也增加部分正好补充了被 也所抵消的那部分磁通,以保持铁 芯里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消 耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线

36、圈的圈数 而改变次级电压,但是不能改变允许负载消耗的功率。如图4-5和4-6分别是主变压器电路和主变压器电路。 视黜馒鹏就金童脑钧u糊。TL4.5 主控电路设计主控电路如图4-7所示:它是基于TL494设计的,i脚的电压为:i7安徽财贸职业学院毕业设计R30 VR1 U 1 - R30 VR1 R29 R31 U O4脚的作用是调整占空比。通过计算得出导通占空比应该在37%£右。当V5导通时,意味着Ube>0.7V则US过计算大约为4V左右。当输出电压过低时,V5处于截止状态,当 输出电压过高时,V5处于导通状态。V5通过调整导通占空比来控制开关电源,对输出 短路起到保护作用。16脚电压为:Ui6=IJi。通过计算可知IO大约为29A。所以它的过载保护电流为29A。 俏潞镉搐氐面镑11。XT首fs1口152221口:WtyfflUE隼GHHL 2M15V7目 外十 XJrl-CSLCrSl'LOOVV5C.itL031ILOJVDT&HDTHF-OUTOUTjOOH5EQO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论