版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、章节第三章 微分中值定理与导数的应用§1 微分中值定理 课时2教学目的掌握三个中值定理的内容教学重点及突出方法中值定理的证明教学难点及突破方法利用中值定理证明的技巧。相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社教学过程教学思路、主要环节、主要内容在给出微分学中值定理的数学定义之前,我们先从几何的角度看一个问题,如下:设有连续函数,a与b是它定义区间内的两点(ab,假定此函数在(a,b)处处可导,也就是在(a,b)内的函数图形上处处都由切线,那末我们从图形上容易看到,
2、60; 差商就是割线AB的斜率,若我们把割线AB作平行于自身的移动,那么至少有一次机会达到离割线最远的一点P(x=c)处成为曲线的切线,而曲线的斜率为,由于切线与割线是平行的,因此 成立。 注:这个结果就称为微分学中值定理,也称为拉格朗日中值定理罗尔定理如果函数f(x)在闭区间a , b上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a) = f(b),那么在(a,b)内至少有一点,使得函数f(x)在该点的导数等于零:。拉格朗日中值定理如果函数f(x)在区间a,b上连续,在开区间(a,b)内可导,那么(a
3、,b)内至少有一点,使等式 (1)成立。柯西中值定理如果函数f(x)及F(x)在闭区间a,b上连续,在开区间(a,b)内可导,且F(x)在(a,b)内的每一点处均不为零,那么在(a,b)内至少有一点,使等式 (2)成立。例题:证明方程在0与1之间至少有一个实根 证明:不难发现方程左端是函数的导数: 函数在0,1上连续,在(0,1)内可导,且,由罗尔定理 可知,在0与1之间至少有一点c,使,即 也就是:方程在0与1之间至
4、少有一个实根章节第三章 微分中值定理与导数的应用§2 洛必达法则课时2教学目的掌握利用洛必达法则法则求极限的方法教学重点及突出方法利用洛必达法则法则求极限教学难点及突破方法利用洛必达法则法则求极限相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社,教学过程教学思路、主要环节、主要内容对于函数f(x),g(x)来说,当xa(或x)时,函数f(x),g(x)都趋于零或无穷大, 则极限可能存在,也可能不存在,我们就把式子称为未定式。分别记为型。我们容易知道,对于未定式的极限
5、求法,是不能应用"商的极限等于极限的商"这个法则来求解的,那么我们该如何求这类问题的极限呢? 下面的洛必达(L'Hospital)法则,它就是这个问题的答案 注:它是根据柯西中值定理推出来的。洛必达(L'Hospital)法则: 当xa(或x)时,函数,都趋于零或无穷大,在点a的某个去心邻域内(或当xN)时,与都存在,0,且存在 则:=证明思路: 补充定义x=a处f(x)=g(x)=0则a,a+) 上= 即 x时,x,于是= 这种通过分子分母求导再来求极限来确定未
6、定式的方法,就是所谓的洛必达(L'Hospital)法则 注:它是以前求极限的法则的补充,以前利用法则不好求的极限,可利用此法则求解。注:罗彼塔法则只是说明:对未定式来说,当存在,则存在且二者的极限相同;而并不是不存在时,也不存在,此时只是说明了罗彼塔法则存在的条件破绽。定理推广:由证明过程显然定理条件x可推广到x, x,x。所以对于待定型,可利用定理将分子、分母同时求导后再求极限。注意事项:1.对于同一算式的计算中,定理可以重复多次使用。2.当算式中出现Sin或Cos形式时,应慎重考虑是否符合洛必达法则条件中与的存在性。向其他待定型的推广。另外,若遇到 、 、
7、 、 等型,通常是转化为型后,在利用法则求解。章节第三章 微分中值定理与导数的应用§3 泰勒公式课时2教学目的掌握泰勒公式教学重点及突出方法泰勒公式及函数单调性的判别法教学难点及突破方法泰勒公式的展开相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社教学过程教学思路、主要环节、主要内容在x=附近关于点的泰勒公式: 在x=0 处的关于x 的泰勒展开公式.即: (麦克劳林公式)注意:虽然泰勒公式是在x="附近"展开,但是事实上x可以取f(x)定义域内任意值,只不过若|x-|
8、过大(即x离过远)时,相应变大.即使用代替f(x)的误差变大.可是,无论如何泰勒公式总是成立的,当固定后,不同的x将使发生变化,并使变化,从而影响对f(x)的近似精度.章节第三章 微分中值定理与导数的应用§4函数单调性与曲线的凸凹性课时2教学目的掌握函数单调性的判别法掌握曲线的凹凸性判别法教学重点及突出方法函数的单调性的判别法曲线的凹凸性判别法教学难点及突破方法函数的单调性的判别法曲线的凹凸性判别法及拐点的求法相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社,教学过程函数的单调性也就是函
9、数的增减性,怎样才能判断函数的增减性呢? 我们知道若函数在某区间上单调增(或减),则在此区间内函数图形上切线的斜率均为正(或负),也就是函数的导数在此区间上均取正值(或负值).因此我们可通过判定函数导数的正负来判定函数的增减性.判定方法: 设函数在a,b上连续,在(a,b)内可导. a):如果在(a,b)内0,那末函数在a,b上单调增加; b):如果在(a,b)内0,那末函数在a,b上单调减少例题:确定函数的增减区间. 解答:容易确定此函数的定义域为(,) , 其导数为:,因此可以判出:
10、当x0时,0,故它的单调增区间为(0,); 当x0时,0,故它的单调减区间为(-,0);注:此判定方法若反过来讲,则是不正确的通过前面的学习,我们知道由一阶导数的正负,可以判定出函数的单调区间与极值,但是还不能进一步研究曲线的性态,为此我们还要了解曲线的凹性。定义: 对区间I的曲线y=f(x)作切线,如果曲线弧在所有切线的下面,则称曲线在区间I下凹,如果曲线在切线的上面,称曲线在区间I上凹。曲线凹向的判定定理 定理一:设函数y=f(x)在区间(a,b)上可导,它对应曲线是向上凹(或向下凹)的充分必要条件是: 导数f/(x)在区间(a,b)上是单调增(或单调减)
11、。 定理二:设函数y=f(x)在区间(a,b)上可导,并且具有一阶导数和二阶导数;那末:若在(a,b)内,f/(x)0,则y=f(x)在a,b对应的曲线是下凹的;若在(a,b)内,f/(x)0,则y=f(x)在a,b对应的曲线是上凹的;拐点的定义: 连续函数上,上凹弧与下凹弧的分界点称为此曲线上的拐点。拐定的判定方法:如果y=f(x)在区间(a,b)内具有二阶导数,我们可按下列步骤来判定y=f(x)的拐点。(1):求;(2):令=0,解出此方程在区间(a,b)内实根; (3):对于(2)中解出的每一个实根x0,检查在x0左、右两侧邻近的符号,若符号相反,则此点
12、是拐点,若相同,则不是拐点。章节第三章 微分中值定理与导数的应用§5 函数的极值与最大值最小值课时2教学目的掌握函数的极值及其求法,最大值最小值问题教学重点及突出方法函数的极值及其求法,最大值最小值问题教学难点及突破方法函数的极值及其求法相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社,教学过程教学思路、主要环节、主要内容函数极值的定义: 设函数f(x)在区间(a,b)内有定义,x0是(a,b)内一点. 若存在着x0点的一个邻域,对于这个邻域内任何点x(x0点除外
13、),f(x)f(x0)均成立, 则说f(x0)是函数f(x)的一个极大值; 若存在着x0点的一个邻域,对于这个邻域内任何点x(x0点除外),f(x)f(x0)均成立, 则说f(x0)是函数f(x)的一个极小值. 函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 学习这个问题之前,我们再来学习一个概念驻点 凡是使f/(x)=0的x点,称为函数f(x)的驻点。 判断极值点存在的方法有两种:如下方法一: 设函数f(x)在x0点的邻域可导,且f/(x0)=0.
14、0; 情况一:若当x取x0左侧邻近值时,f/(x)0,当x取x0右侧邻近值时,f/(x)0, 则函数f(x)在x0点取极大值。 情况二:若当x取x0左侧邻近值时,f/(x)0,当x取x0右侧邻近值时,f/(x)0,则函数f(x)在x0点取极小值。 注:此判定方法也适用于导数在x0点不存在的情况。 用方法一求极值的一般步骤是:(1):求f/(x);(2):求f/(x0)=0的全部的解驻点; (3):判断f/(x)在驻点两侧的变化规律,即可判断出函数的极值。方法二: 设函数f(x)在x0点具有二阶导数,且f/(x0)=0时f/(x
15、0) 0.则:a):当f/(x0)0,函数f(x)在x0点取极大值;b):当f/(x0)0,函数f(x)在x0点取极小值;c):当f/(x0)=0,其情形不一定,可由方法一来判定。在工农业生产、工程技术及科学实验中,常会遇到这样一类问题:在一定条件下,怎样使"产品最多"、"用料最省"、"成本最低"等。 这类问题在数学上可归结为求某一函数的最大值、最小值的问题。 怎样求函数的最大值、最小值呢?前面我们已经知道了,函数的极值是局部的。要求f(x)在a,b上的最大值、最小值时,可求出开区间(a,b)内全部的
16、极值点,加上端点f(a),f(b)的值,从中取得最大值、最小值即为所求。章节第三章 中值定理与导数的应用§6 函数图形的描绘 §7 曲率 §8 方程的近似解课时2教学目的掌握利用导数的性质绘制函数图形掌握求曲线在一点处的曲率教学重点及突出方法函数图形的绘制。教学难点及突破方法函数图形的绘制。相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社,教学过程教学思路、主要环节、主要内容定义:若则称ax+b为f(x)的一条渐进线.定义:若则称x=c为f(x)的一条垂直渐进线.定理
17、:若f(x)的一条渐进线为ax+b 则,函数图象描述的基本步骤:1.确定y=f(x)的定义域并讨论函数的基本性质,如奇偶性,对称性周期性等.2.求出与及与不存在的各点.3.由2的结果函数的上升,下降区间,及图形的上凸,下凸区间以及各极值点.4.定出函数的渐近线. 5.描点作图.平均曲率,这个定义描述了AB曲线上的平均弯曲程度。其中表示曲线段AB上切线变化的角度,为AB弧长。对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令,即定义,为了方便使用,一般令曲率为正数,即:。 ,即为曲率的计算公式一般称为曲线在某一点的曲率半径。3.10 方程的近似解法 应用前提:方程f(x)=0,则f(x)应满足:(1)f(x)在a,b连续,f(a)与f(b)不同号。(2)f/(x)在(a,b)内连续且不变号。(3)f/(x)在(a,b)内连续且不变号。 应用步骤:首先:判断方程是否满足应用前提,先对端点a,b求f(a)、f(b),取与f/(x)同号的一点为起点。过起点做f(x)的切线,交x轴于x1。然后:过(x1,f(x1)做f(x)的切线,交x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诊断学基础练习试题附答案
- 一年级数学上册《认识图形(一)》说课稿
- 2021年交通安全讲座的心得体会400字
- 国家级产业园基础设施项目验收标准与质量控制
- 供气投资估算与资金筹措
- 省级产业园区基础设施项目可行性研究报告
- 土建预算课课程设计
- 测绘实训课程设计
- 2024年节能环保燃油热水炉购销与市场拓展合同6篇
- 2024年绿色蔬菜大棚租赁合作框架协议3篇
- 2023-2024学年黑龙江省哈尔滨市道里区七年级(下)期末数学试卷(五四学制)(含答案)
- SL+290-2009水利水电工程建设征地移民安置规划设计规范
- 水电站施工合同水电站施工合同(2024版)
- 河南省周口市商水县2023-2024学年七年级下学期期末语文试题
- 渭南市白水县2021-2022学年七年级上学期期末考试数学试卷【带答案】
- 2024年美国压力袜市场现状及上下游分析报告
- 2012建设工程造价咨询成果文件质量标准
- 心内科介入手术围手术期处理
- 2024年春季学期言语交际期末综合试卷-国开(XJ)-参考资料
- DZ∕T 0289-2015 区域生态地球化学评价规范(正式版)
- 重庆空港贵宾服务有限公司招聘笔试真题2021
评论
0/150
提交评论