原子距离问题_第1页
原子距离问题_第2页
原子距离问题_第3页
原子距离问题_第4页
原子距离问题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验7 无约束优化题目5 某分子由25个原子组成,并且已经通过实验测量得到了其中某些原子对之间的距离(假设在平面结构上讨论),如表7.8所示。请你确定每个原子的位置关系。表7.8原子对距离原子对距离原子对距离原子对距离(4,1)0.9607(5,4)0.4758(18,8)0.8363(15,13)0.5725(12,1)0.4399(12,4)1.3402(13,9)0.3208(19,13)0.7660(13,1)0.8143(24,4)0.7006(15,9)0.1574(15,14)0.4394(17,1)1.3765(8,6)0.4945(22,9)1.2736(16,14)1.09

2、52(21,1)1.2722(13,6)1.0559(11,10)0.5781(20,16)1.0422(5,2)0.5294(19,6)0.6810(13,10)0.9254(23,16)1.8255(16,2)0.6144(25,6)0.3587(19,10)0.6401(18,17)1.4325(17,2)0.3766(8,7)0.3351(20,10)0.2467(19,17)1.0851(25,2)0.6893(14,7)0.2878(22,10)0.4727(20,19)0.4995(5,3)0.9488(16,7)1.1346(18,11)1.3840(23,19)1.2277(

3、20,3)0.8000(20,7)0.3870(25,11)0.4366(24,19)1.1271(21,3)1.1090(21,7)0.7511(15,12)1.0307(23,21)0.7060(24,3)1.1432(14,8)0.4439(17,12)1.3904(23,22)0.8025【模型建立】设第i个点所在的位置为,因为所求的是各原子间的位置关系,可以设定第一个点坐标为,然后再计算其他原子的位置,使它在最大程度上满足上表中提供的数据,即让达到最小,其中表示第i个原子和第j个原子之间的距离,数据如上表中所示。问题转化为无约束优化:【算法设计】上面是一个无约束优化问题,要求可以归结

4、到无约束规划模型min f(x),令X=0,X2,X3,X4,x25,0,y2,y3,y25,调用基本命令fminunc来做,也可以令,调用lsqnonlin命令来做。【程序】方法一 用lsqnonlin命令实现function f=distance(x,d) f(1)=(x(1,3)2+(x(2,3)2-d(1)2; %对应条件第4个和第1个原子间距f(2)=(x(1,11)2+(x(2,11)2-d(2)2;f(3)=(x(1,12)2+(x(2,12)2-d(3)2;f(4)=(x(1,16)2+(x(2,16)2-d(4)2;f(5)=(x(1,20)2+(x(2,20)2-d(5)2

5、;f(6)=(x(1,4)-x(1,1)2+(x(2,4)-x(2,1)2-d(6)2;f(7)=(x(1,15)-x(1,1)2+(x(2,15)-x(2,1)2-d(7)2;f(8)=(x(1,16)-x(1,1)2+(x(2,16)-x(2,1)2-d(8)2;f(9)=(x(1,24)-x(1,1)2+(x(2,24)-x(2,1)2-d(9)2;f(10)=(x(1,4)-x(1,2)2+(x(2,4)-x(2,2)2-d(10)2;f(11)=(x(1,19)-x(1,2)2+(x(2,19)-x(2,2)2-d(11)2;f(12)=(x(1,20)-x(1,2)2+(x(2,2

6、0)-x(2,2)2-d(12)2;f(13)=(x(1,23)-x(1,2)2+(x(2,23)-x(2,2)2-d(13)2;f(14)=(x(1,4)-x(1,3)2+(x(2,4)-x(2,3)2-d(14)2;f(15)=(x(1,11)-x(1,3)2+(x(2,11)-x(2,3)2-d(15)2;f(16)=(x(1,23)-x(1,3)2+(x(2,23)-x(2,3)2-d(16)2;f(17)=(x(1,7)-x(1,5)2+(x(2,7)-x(2,5)2-d(17)2;f(18)=(x(1,12)-x(1,5)2+(x(2,12)-x(2,5)2-d(18)2;f(19

7、)=(x(1,18)-x(1,5)2+(x(2,18)-x(2,5)2-d(19)2;f(20)=(x(1,24)-x(1,5)2+(x(2,24)-x(2,5)2-d(20)2;f(21)=(x(1,7)-x(1,6)2+(x(2,7)-x(2,6)2-d(21)2;f(22)=(x(1,13)-x(1,6)2+(x(2,13)-x(2,6)2-d(22)2;f(23)=(x(1,15)-x(1,6)2+(x(2,15)-x(2,6)2-d(23)2;f(24)=(x(1,19)-x(1,6)2+(x(2,19)-x(2,6)2-d(24)2;f(25)=(x(1,20)-x(1,6)2+(

8、x(2,20)-x(2,6)2-d(25)2;f(26)=(x(1,13)-x(1,7)2+(x(2,13)-x(2,7)2-d(26)2;f(27)=(x(1,17)-x(1,7)2+(x(2,17)-x(2,7)2-d(27)2;f(28)=(x(1,12)-x(1,8)2+(x(2,12)-x(2,8)2-d(28)2;f(29)=(x(1,14)-x(1,8)2+(x(2,14)-x(2,8)2-d(29)2;f(30)=(x(1,21)-x(1,8)2+(x(2,21)-x(2,8)2-d(30)2;f(31)=(x(1,10)-x(1,9)2+(x(2,10)-x(2,9)2-d(

9、31)2;f(32)=(x(1,12)-x(1,9)2+(x(2,12)-x(2,9)2-d(32)2;f(33)=(x(1,18)-x(1,9)2+(x(2,18)-x(2,9)2-d(33)2;f(34)=(x(1,19)-x(1,9)2+(x(2,19)-x(2,9)2-d(34)2;f(35)=(x(1,21)-x(1,9)2+(x(2,21)-x(2,9)2-d(35)2;f(36)=(x(1,17)-x(1,10)2+(x(2,17)-x(2,10)2-d(36)2;f(37)=(x(1,24)-x(1,10)2+(x(2,24)-x(2,10)2-d(37)2;f(38)=(x(

10、1,14)-x(1,11)2+(x(2,14)-x(2,11)2-d(38)2;f(39)=(x(1,16)-x(1,11)2+(x(2,16)-x(2,11)2-d(39)2;f(40)=(x(1,14)-x(1,12)2+(x(2,14)-x(2,12)2-d(40)2;f(41)=(x(1,18)-x(1,12)2+(x(2,18)-x(2,12)2-d(41)2;f(42)=(x(1,14)-x(1,13)2+(x(2,14)-x(2,13)2-d(42)2;f(43)=(x(1,15)-x(1,13)2+(x(2,15)-x(2,13)2-d(43)2;f(44)=(x(1,19)-

11、x(1,15)2+(x(2,19)-x(2,15)2-d(44)2;f(45)=(x(1,22)-x(1,15)2+(x(2,22)-x(2,15)2-d(45)2;f(46)=(x(1,17)-x(1,16)2+(x(2,17)-x(2,16)2-d(46)2;f(47)=(x(1,18)-x(1,16)2+(x(2,18)-x(2,16)2-d(47)2;f(48)=(x(1,19)-x(1,18)2+(x(2,19)-x(2,18)2-d(48)2;f(49)=(x(1,22)-x(1,18)2+(x(2,22)-x(2,18)2-d(49)2;f(50)=(x(1,23)-x(1,18

12、)2+(x(2,23)-x(2,18)2-d(50)2;f(51)=(x(1,22)-x(1,20)2+(x(2,22)-x(2,20)2-d(51)2;f(52)=(x(1,22)-x(1,21)2+(x(2,22)-x(2,21)2-d(52)2;clear allx0=zeros(1,24);ones(1,24);d=0.9607,0.4399,0.8143,1.3765,1.2722,0.5294,0.6144,0.3766,0.6893,. 0.9488,0.8000,1.1090,1.1432,0.4758,1.3402,0.7006,0.4945,1.0559,. 0.6810,

13、0.3587,0.3351,0.2878,1.1346,0.3870,0.7511,0.4439,0.8363,. 0.3208,0.1574,1.2736,0.5781,0.9254,0.6401,0.2467,0.4727,1.3840,. 0.4366,1.0307,1.3904,0.5725,0.7660,0.4394,1.0952,1.0422,1.8255,. 1.4325,1.0851,0.4995,1.2277,1.1271,0.7060,0.8052'%设定初值x,norms=lsqnonlin(distance,x0,d);p=x' %p第一行即为第二个原子

14、的横、纵坐标;p第二行为第三个原子的横、纵坐标a=0,x(1,:);b=0,x(2,:);plot(a,b,'*'); %画散点图表示出原子的位置【输出结果】每个原子的位置如下(即第二个原子的位置为(1.2378,0.0746),第三个原子为(1,6142,1,。1211),):p = 1.2378 0.0746 1.6142 1.1211 0.5485 0.7778 0.9121 0.4836 0.8546 1.1533 0.7009 0.4533 0.9871 0.6573 0.4694 0.2363 0.8326 1.0437 0.4356 0.6211 -0.0650

15、-0.4184 0.8165 0.1140 0.7351 0.2500 0.3971 0.4986 1.8229 0.2932 1.3241 -0.3717 1.7657 0.9905 1.3514 0.7020 0.8921 0.7787 0.5040 1.1701 1.3106 1.1878 0.8031 1.8060 0.5290 1.4757 0.8946 0.7093为了形象直观地表示出各点的位置,画出如下的散点图:方法二 用fminunc实现function f=distance1(x,d) f=(x(1,3)2+(x(2,3)2-d(1)2; f=f+(x(1,11)2+(x(2

16、,11)2-d(2)2;f=f+(x(1,12)2+(x(2,12)2-d(3)2;f=f+(x(1,16)2+(x(2,16)2-d(4)2;f=f+(x(1,20)2+(x(2,20)2-d(5)2;f=f+(x(1,4)-x(1,1)2+(x(2*5-2)-x(2,1)2-d(6)2;f=f+(x(1,15)-x(1,1)2+(x(2,15)-x(2,1)2-d(7)2;f=f+(x(1,16)-x(1,1)2+(x(2,16)-x(2,1)2-d(8)2;f=f+(x(1,24)-x(1,1)2+(x(2,24)-x(2,1)2-d(9)2;f=f+(x(1,4)-x(1,2)2+(x

17、(2,4)-x(2,2)2-d(10)2;f=f+(x(1,19)-x(1,2)2+(x(2,19)-x(2,2)2-d(11)2;f=f+(x(1,20)-x(1,2)2+(x(2,20)-x(2,2)2-d(12)2;f=f+(x(1,23)-x(1,2)2+(x(2,23)-x(2,2)2-d(13)2;f=f+(x(1,4)-x(1,3)2+(x(2,4)-x(2,3)2-d(14)2;f=f+(x(1,11)-x(1,3)2+(x(2,11)-x(2,3)2-d(15)2;f=f+(x(1,23)-x(1,3)2+(x(2,23)-x(2,3)2-d(16)2;f=f+(x(1,7)

18、-x(1,5)2+(x(2,7)-x(2,5)2-d(17)2;f=f+(x(1,12)-x(1,5)2+(x(2,12)-x(2,5)2-d(18)2;f=f+(x(1,18)-x(1,5)2+(x(2,18)-x(2,5)2-d(19)2;f=f+(x(1,24)-x(1,5)2+(x(2,24)-x(2,5)2-d(20)2;f=f+(x(1,7)-x(1,6)2+(x(2,7)-x(2,6)2-d(21)2;f=f+(x(1,13)-x(1,6)2+(x(2,13)-x(2,6)2-d(22)2;f=f+(x(1,15)-x(1,6)2+(x(2,15)-x(2,6)2-d(23)2;

19、f=f+(x(1,19)-x(1,6)2+(x(2,19)-x(2,6)2-d(24)2;f=f+(x(1,20)-x(1,6)2+(x(2,20)-x(2,6)2-d(25)2;f=f+(x(1,13)-x(1,7)2+(x(2,13)-x(2,7)2-d(26)2;f=f+(x(1,17)-x(1,7)2+(x(2,17)-x(2,7)2-d(27)2;f=f+(x(1,12)-x(1,8)2+(x(2,12)-x(2,8)2-d(28)2;f=f+(x(1,14)-x(1,8)2+(x(2,14)-x(2,8)2-d(29)2;f=f+(x(1,21)-x(1,8)2+(x(2,21)-

20、x(2,8)2-d(30)2;f=f+(x(1,10)-x(1,9)2+(x(2,10)-x(2,9)2-d(31)2;f=f+(x(1,12)-x(1,9)2+(x(2,12)-x(2,9)2-d(32)2;f=f+(x(1,18)-x(1,9)2+(x(2,18)-x(2,9)2-d(33)2;f=f+(x(1,19)-x(1,9)2+(x(2,19)-x(2,9)2-d(34)2;f=f+(x(1,21)-x(1,9)2+(x(2,21)-x(2,9)2-d(35)2;f=f+(x(1,17)-x(1,10)2+(x(2,17)-x(2,10)2-d(36)2;f=f+(x(1,24)-

21、x(1,10)2+(x(2,24)-x(2,10)2-d(37)2;f=f+(x(1,14)-x(1,11)2+(x(2,14)-x(2,11)2-d(38)2;f=f+(x(1,16)-x(1,11)2+(x(2,16)-x(2,11)2-d(39)2;f=f+(x(1,14)-x(1,12)2+(x(2,14)-x(2,12)2-d(40)2;f=f+(x(1,18)-x(1,12)2+(x(2,18)-x(2,12)2-d(41)2;f=f+(x(1,14)-x(1,13)2+(x(2,14)-x(2,13)2-d(42)2;f=f+(x(1,15)-x(1,13)2+(x(2,15)-

22、x(2,13)2-d(43)2;f=f+(x(1,19)-x(1,15)2+(x(2,19)-x(2,15)2-d(44)2;f=f+(x(1,22)-x(1,15)2+(x(2,22)-x(2,15)2-d(45)2;f=f+(x(1,17)-x(1,16)2+(x(2,17)-x(2,16)2-d(46)2;f=f+(x(1,18)-x(1,16)2+(x(2,18)-x(2,16)2-d(47)2;f=f+(x(1,19)-x(1,18)2+(x(2,19)-x(2,18)2-d(48)2;f=f+(x(1,22)-x(1,18)2+(x(2,22)-x(2,18)2-d(49)2;f=

23、f+(x(1,23)-x(1,18)2+(x(2,23)-x(2,18)2-d(50)2;f=f+(x(1,22)-x(1,20)2+(x(2,22)-x(2,20)2-d(51)2;f=f+(x(1,22)-x(1,21)2+(x(2,22)-x(2,21)2-d(52)2;clear all;d=0.9607,0.4399,0.8143,1.3765,1.2722,0.5294,0.6144,0.3766,0.6893,0.9488,0.8000,1.1090,1.1432,0.4758,1.3402,0.7006,0.4945,1.0559,0.6810,0.3587,0.3351,0.

24、2878,1.1346,0.3870,0.7511,0.4439,0.8363,0.3208,0.1574,1.2736,0.5781,0.9254,0.6401,0.2467,0.4727,1.3840,0.4366,1.0307,1.3904,0.5725,0.7660,0.4394,1.0952,1.0422,1.8255,1.4325,1.0851,0.4995,1.2277,1.1271,0.7060,0.8052'x0=zeros(1,26),ones(1,24);opt = optimset('tolx',1e-16,'tolf',1e-1

25、6);x,z,exit1,out1 = fminunc(distance1,x0,opt,d);p=0,0;x(1:24)',x(25:48)'a=0,x(1:24);b=0,x(25:48);plot(a,b,'*');%画散点图表示原子位置【输出结果】每个原子的位置如下(即第二个原子的位置为(-0.6818,0.6856),第二个原子为(-0.3563,0.2298),):p = 0 0 -0.6818 0.6856 -0.3563 0.2298 -0.0530 0.9715 -0.4866 1.1721 0.0506 1.0700 0.3992 0.674

26、4 0.0547 0.5349 -0.3948 0.3789 -0.1388 1.0752 0.4190 0.9660 -0.3796 -0.3227 -0.7430 0.3687 0.1511 0.9167 -0.2615 0.6897 -0.5621 0.0830 -0.9836 0.9375 -0.2070 -0.2659 -0.0144 0.4168 0.0717 0.9085 -0.0117 1.2804 -0.0890 1.6054 0.6877 1.4172 -0.6661 1.3305 0.0125 0.7379画出位置散点图如下:【结果分析】(1)关于lsqononlin与f

27、minunc精确性的探讨用上面两种不同的命令所求出来的结果并不一样,可能是因为模型建立稍有差别导致算法不同而引起的。为了找到更适合解决本题的模型,在命令窗口中输入以下命令比较两种算法的精确性。对于方法一 (用lsqnonlin命令实现)>> d=0.9607,0.4399,0.8143,1.3765,1.2722,0.5294,0.6144,0.3766,0.6893,. 0.9488,0.8000,1.1090,1.1432,0.4758,1.3402,0.7006,0.4945,1.0559,. 0.6810,0.3587,0.3351,0.2878,1.1346,0.3870

28、,0.7511,0.4439,0.8363,. 0.3208,0.1574,1.2736,0.5781,0.9254,0.6401,0.2467,0.4727,1.3840,. 0.4366,1.0307,1.3904,0.5725,0.7660,0.4394,1.0952,1.0422,1.8255,. 1.4325,1.0851,0.4995,1.2277,1.1271,0.7060,0.8052'x=p'f(1)=(x(1,3)2+(x(2,3)2-d(1)2; %对应条件第4个和第1个原子间距f(2)=(x(1,11)2+(x(2,11)2-d(2)2;f(3)=(x(

29、1,12)2+(x(2,12)2-d(3)2;f(4)=(x(1,16)2+(x(2,16)2-d(4)2;f(5)=(x(1,20)2+(x(2,20)2-d(5)2;f(6)=(x(1,4)-x(1,1)2+(x(2*5-2)-x(2,1)2-d(6)2;f(7)=(x(1,15)-x(1,1)2+(x(2,15)-x(2,1)2-d(7)2;f(8)=(x(1,16)-x(1,1)2+(x(2,16)-x(2,1)2-d(8)2;f(9)=(x(1,24)-x(1,1)2+(x(2,24)-x(2,1)2-d(9)2;f(10)=(x(1,4)-x(1,2)2+(x(2,4)-x(2,2

30、)2-d(10)2;f(11)=(x(1,19)-x(1,2)2+(x(2,19)-x(2,2)2-d(11)2;f(12)=(x(1,20)-x(1,2)2+(x(2,20)-x(2,2)2-d(12)2;f(13)=(x(1,23)-x(1,2)2+(x(2,23)-x(2,2)2-d(13)2;f(14)=(x(1,4)-x(1,3)2+(x(2,4)-x(2,3)2-d(14)2;f(15)=(x(1,11)-x(1,3)2+(x(2,11)-x(2,3)2-d(15)2;f(16)=(x(1,23)-x(1,3)2+(x(2,23)-x(2,3)2-d(16)2;f(17)=(x(1

31、,7)-x(1,5)2+(x(2,7)-x(2,5)2-d(17)2;f(18)=(x(1,12)-x(1,5)2+(x(2,12)-x(2,5)2-d(18)2;f(19)=(x(1,18)-x(1,5)2+(x(2,18)-x(2,5)2-d(19)2;f(20)=(x(1,24)-x(1,5)2+(x(2,24)-x(2,5)2-d(20)2;f(21)=(x(1,7)-x(1,6)2+(x(2,7)-x(2,6)2-d(21)2;f(22)=(x(1,13)-x(1,6)2+(x(2,13)-x(2,6)2-d(22)2;f(23)=(x(1,15)-x(1,6)2+(x(2,15)-

32、x(2,6)2-d(23)2;f(24)=(x(1,19)-x(1,6)2+(x(2,19)-x(2,6)2-d(24)2;f(25)=(x(1,20)-x(1,6)2+(x(2,20)-x(2,6)2-d(25)2;f(26)=(x(1,13)-x(1,7)2+(x(2,13)-x(2,7)2-d(26)2;f(27)=(x(1,17)-x(1,7)2+(x(2,17)-x(2,7)2-d(27)2;f(28)=(x(1,12)-x(1,8)2+(x(2,12)-x(2,8)2-d(28)2;f(29)=(x(1,14)-x(1,8)2+(x(2,14)-x(2,8)2-d(29)2;f(3

33、0)=(x(1,21)-x(1,8)2+(x(2,21)-x(2,8)2-d(30)2;f(31)=(x(1,10)-x(1,9)2+(x(2,10)-x(2,9)2-d(31)2;f(32)=(x(1,12)-x(1,9)2+(x(2,12)-x(2,9)2-d(32)2;f(33)=(x(1,18)-x(1,9)2+(x(2,18)-x(2,9)2-d(33)2;f(34)=(x(1,19)-x(1,9)2+(x(2,19)-x(2,9)2-d(34)2;f(35)=(x(1,21)-x(1,9)2+(x(2,21)-x(2,9)2-d(35)2;f(36)=(x(1,17)-x(1,10

34、)2+(x(2,17)-x(2,10)2-d(36)2;f(37)=(x(1,24)-x(1,10)2+(x(2,24)-x(2,10)2-d(37)2;f(38)=(x(1,14)-x(1,11)2+(x(2,14)-x(2,11)2-d(38)2;f(39)=(x(1,16)-x(1,11)2+(x(2,16)-x(2,11)2-d(39)2;f(40)=(x(1,14)-x(1,12)2+(x(2,14)-x(2,12)2-d(40)2;f(41)=(x(1,18)-x(1,12)2+(x(2,18)-x(2,12)2-d(41)2;f(42)=(x(1,14)-x(1,13)2+(x(

35、2,14)-x(2,13)2-d(42)2;f(43)=(x(1,15)-x(1,13)2+(x(2,15)-x(2,13)2-d(43)2;f(44)=(x(1,19)-x(1,15)2+(x(2,19)-x(2,15)2-d(44)2;f(45)=(x(1,22)-x(1,15)2+(x(2,22)-x(2,15)2-d(45)2;f(46)=(x(1,17)-x(1,16)2+(x(2,17)-x(2,16)2-d(46)2;f(47)=(x(1,18)-x(1,16)2+(x(2,18)-x(2,16)2-d(47)2;f(48)=(x(1,19)-x(1,18)2+(x(2,19)-

36、x(2,18)2-d(48)2;f(49)=(x(1,22)-x(1,18)2+(x(2,22)-x(2,18)2-d(49)2;f(50)=(x(1,23)-x(1,18)2+(x(2,23)-x(2,18)2-d(50)2;f(51)=(x(1,22)-x(1,20)2+(x(2,22)-x(2,20)2-d(51)2;f(52)=(x(1,22)-x(1,21)2+(x(2,22)-x(2,21)2-d(52)2;>> a=0;>> for i=1:52a=a+f(i);end>>a运行结果为a =0.2190对于方法二(用fminunc命令实现)&g

37、t;> f = (x(4-1)2 + x(24+4-1)2 - d(1)2)2;f = f + (x(12-1)2 + x(24+12-1)2 - d(2)2)2;f = f + (x(13-1)2 + x(24+13-1)2 - d(3)2)2;f = f + (x(17-1)2 + x(24+17-1)2 - d(4)2)2;f = f + (x(21-1)2 + x(24+21-1)2 - d(5)2)2; f = f + (x(5-1) - x(2-1)2 + (x(24+5-1) - x(24+2-1)2 - d(6)2)2; f = f + (x(16-1) - x(2-1)

38、2 + (x(24+16-1) - x(24+2-1)2 - d(7)2)2; f = f + (x(17-1) - x(2-1)2 + (x(24+17-1) - x(24+2-1)2 - d(8)2)2; f = f + (x(25-1) - x(2-1)2 + (x(24+25-1) - x(24+2-1)2 - d(9)2)2; f = f + (x(5-1) - x(3-1)2 + (x(24+5-1) - x(24+3-1)2 - d(10)2)2; f = f + (x(20-1) - x(3-1)2 + (x(24+20-1) - x(24+3-1)2 - d(11)2)2;

39、f = f + (x(21-1) - x(3-1)2 + (x(24+21-1) - x(24+3-1)2 - d(12)2)2; f = f + (x(24-1) - x(3-1)2 + (x(24+24-1) - x(24+3-1)2 - d(13)2)2; f = f + (x(5-1) - x(4-1)2 + (x(24+5-1) - x(24+4-1)2 - d(14)2)2; f = f + (x(12-1) - x(4-1)2 + (x(24+12-1) - x(24+4-1)2 - d(15)2)2;f = f + (x(24-1) - x(4-1)2 + (x(24+24-1

40、) - x(24+4-1)2 - d(16)2)2; f = f + (x(8-1) - x(6-1)2 + (x(24+8-1) - x(24+6-1)2 - d(17)2)2; f = f + (x(13-1) - x(6-1)2 + (x(24+13-1) - x(24+6-1)2 - d(18)2)2; f = f + (x(19-1) - x(6-1)2 + (x(24+19-1) - x(24+6-1)2 - d(19)2)2; f = f + (x(25-1) - x(6-1)2 + (x(24+25-1) - x(24+6-1)2 - d(20)2)2; f = f + (x(

41、8-1) - x(7-1)2 + (x(24+8-1) - x(24+7-1)2 - d(21)2)2; f = f + (x(14-1) - x(7-1)2 + (x(24+14-1) - x(24+7-1)2 - d(22)2)2;f = f + (x(16-1) - x(7-1)2 + (x(24+16-1) - x(24+7-1)2 - d(23)2)2;f = f + (x(20-1) - x(7-1)2 + (x(24+20-1) - x(24+7-1)2 - d(24)2)2; f = f + (x(21-1) - x(7-1)2 + (x(24+21-1) - x(24+7-1

42、)2 - d(25)2)2; f = f + (x(14-1) - x(8-1)2 + (x(24+14-1) - x(24+8-1)2 - d(26)2)2; f = f + (x(18-1) - x(8-1)2 + (x(24+18-1) - x(24+8-1)2 - d(27)2)2; f = f + (x(13-1) - x(9-1)2 + (x(24+13-1) - x(24+9-1)2 - d(28)2)2; f = f + (x(15-1) - x(9-1)2 + (x(24+15-1) - x(24+9-1)2 - d(29)2)2; f = f + (x(22-1) - x(

43、9-1)2 + (x(24+22-1) - x(24+9-1)2 - d(30)2)2; f = f + (x(11-1) - x(10-1)2 + (x(24+11-1) - x(24+10-1)2 - d(31)2)2; f = f + (x(13-1) - x(10-1)2 + (x(24+13-1) - x(24+10-1)2 - d(32)2)2; f = f + (x(19-1) - x(10-1)2 + (x(24+19-1) - x(24+10-1)2 - d(33)2)2; f = f + (x(20-1) - x(10-1)2 + (x(24+20-1) - x(24+10

44、-1)2 - d(34)2)2; f = f + (x(22-1) - x(10-1)2 + (x(24+22-1) - x(24+10-1)2 - d(35)2)2; f = f + (x(18-1) - x(11-1)2 + (x(24+18-1) - x(24+11-1)2 - d(36)2)2; f = f + (x(25-1) - x(11-1)2 + (x(24+25-1) - x(24+11-1)2 - d(37)2)2; f = f + (x(15-1) - x(12-1)2 + (x(24+15-1) - x(24+12-1)2 - d(38)2)2; f = f + (x(

45、17-1) - x(12-1)2 + (x(24+17-1) - x(24+12-1)2 - d(39)2)2; f = f + (x(15-1) - x(13-1)2 + (x(24+15-1) - x(24+13-1)2 - d(40)2)2; f = f + (x(19-1) - x(13-1)2 + (x(24+19-1) - x(24+13-1)2 - d(41)2)2; f = f + (x(15-1) - x(14-1)2 + (x(24+15-1) - x(24+14-1)2 - d(42)2)2; f = f + (x(16-1) - x(14-1)2 + (x(24+16-

46、1) - x(24+14-1)2 - d(43)2)2; f = f + (x(20-1) - x(16-1)2 + (x(24+20-1) - x(24+16-1)2 - d(44)2)2; f = f + (x(23-1) - x(16-1)2 + (x(24+23-1) - x(24+16-1)2 - d(45)2)2; f = f + (x(18-1) - x(17-1)2 + (x(24+18-1) - x(24+17-1)2 - d(46)2)2; f = f + (x(19-1) - x(17-1)2 + (x(24+19-1) - x(24+17-1)2 - d(47)2)2;

47、 f = f + (x(20-1) - x(19-1)2 + (x(24+20-1) - x(24+19-1)2 - d(48)2)2; f = f + (x(23-1) - x(19-1)2 + (x(24+23-1) - x(24+19-1)2 - d(49)2)2; f = f + (x(24-1) - x(19-1)2 + (x(24+24-1) - x(24+19-1)2 - d(50)2)2; f = f + (x(23-1) - x(21-1)2 + (x(24+23-1) - x(24+21-1)2 - d(51)2)2; f = f + (x(23-1) - x(22-1)2

48、 + (x(24+23-1) - x(24+22-1)2 - d(52)2)2;>> d=0.9607,0.4399,0.8143,1.3765,1.2722,0.5294,0.6144,0.3766,0.6893,0.9488,0.8000,1.1090,1.1432,0.4758,1.3402,0.7006,0.4945,1.0559,0.6810,0.3587,0.3351,0.2878,1.1346,0.3870,0.7511,0.4439,0.8363,0.3208,0.1574,1.2736,0.5781,0.9254,0.6401,0.2467,0.4727,1.38

49、40,0.4366,1.0307,1.3904,0.5725,0.7660,0.4394,1.0952,1.0422,1.8255,1.4325,1.0851,0.4995,1.2277,1.1271,0.7060,0.8052'x=p(:,1)',p(:,2)'>> f运行结果为f =0.0375两种算法初值的设定是一样的。对比两个运行结果,用fminunc求出的距离差的和小于用lsqonlin求出的距离差的和。由此可见,用fminunc命令求解更为精确。(2)改变初值对结果的影响鉴于前面的分析,我们采用fminunc命令得到的结果来继续下面的讨论。将初值

50、改为x0=zeros(1,2),ones(1,46);运行结果如下: p = 0 0 0.5553 1.5928 0.1561 0.4287 0.7454 0.6616 0.8003 1.1268 1.1061 0.7317 1.1218 0.9560 0.8743 1.1478 0.2187 0.4924 0.9728 0.8388 0.3939 0.8547 -0.4765 0.1503 0.0492 0.8143 0.9413 0.6822 0.5017 0.4869 0.0320 1.2791 0.2655 1.3360 1.6969 1.3201 0.5989 0.2906 0.89

51、71 0.6896 1.2488 0.2158 1.2155 1.2784 1.7608 0.6915 0.7832 1.3882 0.8195 0.9554画出位置散点图:对于其他初值的设定情况也大致相同。由此可见,改变初值,对于最终结果的影响是很大的。不同的初值,得到原子的位置不一样。我觉得可能的原因是fminunc求出的是局部极小值,在不同的初值条件下函数会收敛到不同的极小值,因此会有上述情况发生。【实验结论】对于无约束优化求极小值的问题,可以采用lsqnonlin和fminunc等不同的命令,得到的结果虽算法的不同而有所不同。此外,设置不同的初值,也可以得到不同的结果,因此说明初值的选取对研究问题其一定的作用。为了得到更准确的模型,需要根据实际问题慎重地选取初值。吸收室c1(t)中心室 c(t)k1k题目8 给药方案设计需要依据药物吸收与排除过程的原理。药物进入机体后随血液输送到全身,不断地被吸收、分布、代谢,最终排出体外。药物在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论