版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四讲:因式分解的常见变形技巧在因式分解学习过程中,除要掌握教材上介绍的三种基本方法:提公因式,公式法,分组分解法外,还常常要进行一些灵活的变换。下面就简单介绍一下这些常见的变换方法。掌握了这些变换方法后,这类因式分解问题基本可以迎刃而解了。需要说明的是,要想熟练掌握这些技巧,还需要同学们结合平时的练习去体验我们所讲的方法和思路。技巧一 符号变换有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。体验题1 (m+n)(x-y)+(m-n)(y-x)指点迷津 y-x= -(x-y)体验过程原式=(m+n)(x-y)-(m-n)(x-y) =(x-y
2、)(m+n-m+n) =2n(x-y)小结符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。实践题1 分解因式:-a2-2ab-b2技巧二 系数变换有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。体验题2分解因式 4x2-12xy+9y2体验过程原式=(2x)2-2(2x)(3y)+(3y)2=(2x-3y)2小结系数变化常用于可用公式,但用公式的条件不太清晰的情况下。实践题2分解因式技巧三 指数变换有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。体验题3分解因式x4-y4指点迷津把x2看成(x2)2,把y
3、4看成(y2)2,然后用平方差公式。体验过程原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y)小结指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。实践题3 分解因式 a4-2a4b4+b4技巧四 展开变换有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。然后再分组。体验题4 a(a+2)+b(b+2)+2ab指点迷津表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。然后分组。体验过程原式= a2+2a+b2+2b+2ab=(a+b)2+2(a+b
4、)=(a+b)(a+b+2)小结展开变化常用于已经分组,但此分组无法分解因式,相当于重新分组。实践题4x(x-1)-y(y-1)技巧五 拆项变换有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。这类问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。体验题5分解因式3a3-4a+1指点迷津本题最高次是三次,缺二次项。三次项的系数为3,而一次项的系数为-4提公因式后,没法结合常数项。所以我们将一次项拆开,拆成-3a-a试试。体验过程原式= 3a3-3a-a+1=3a(a2-1)+1-a=3a(a+1)(a-1)-(a-1)=(a-1)3a(a+1)-1=(a
5、-1)(3a2+3a-1)另外,也可以拆常数项,将1拆成4-3。原式=3a3-4a+4-3=3(a3-1)-4(a-1)=3(a-1)(a2+a+1)-4(a-1)=(a-1)(3a2+3a+3-4)=(a-1)( 3a2+3a-1)小结拆项变化多用于缺项的情况,如整式3a3-4a+1,最高次是三,其它的项分别是一,零。缺二次项。通常拆项的目的是将各项的系数调整趋于一致。实践题5分解因式 3a3+5a2-2技巧六 添项变换有些多项式类似完全平方式,但直接无法分解因式。既然类似完全平方式,我们就添一项然后去一项凑成完全平方式。然后再考虑用其它的方法。体验题6分解因式x2+4x-12指点迷津本题用
6、常规的方法几乎无法入手。与完全平方式很象。因此考虑将其配成完全平方式再说。体验过程原式= x2+4x+4-4-12=(x+2)2-16=(x+2)2-42=(x+2+4)(x+2-4)=(x+6)(x-2)小结添项法常用于含有平方项,一次项类似完全平方式的整式或者是缺项的整式,添项的基本目的是配成完全平方式。实践题6分解因式x2-6x+8实践题7分解因式a4+4技巧七 换元变换有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得清晰起来了。然后再考虑用公式法或者其它方法。体验题7分解因式 (x+1)(x+2)(x+3)(x+4)+1指点迷津直接展开太麻烦,我们考虑两两结合。
7、看能否把某些部分作为整体考虑。体验过程(x+1)(x+2)(x+3)(x+4)+1=(x+1)(x+4)(x+2)(x+3)+1=(x2+5x+4)(x2+5x+6)+1*令x2+5x=m.上式变形为(m+4)(m+6)+1m2+10m+24+1=(m+5)2=(x2+5x+5)2*式也可以这样变形,令x2+5x+4=m原式可变为:m(m+2)+1=m2+2m+1=(m+1)2=(x2+5x+5)2小结换元法常用于多项式较复杂,其中有几项的部分相同的情况下。如上题中的x2+5x+4与x2+5x+6就有相同的项x2+5x.,换元法实际上是用的整体的观点来看问题。实践题8 分解因式x(x+2)(x
8、+3)(x+5)+9巩固练习:分解因式(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1(5)x3-9x+8 (6) (x2+x+1)(x2+x+2)-12(7)(x2+3x+2)(4x2+8x+3)-90 (8)(x2+4x+8)2+3x(x2+4x+8)+2x2 (9)6x4+7x3-36x2-7x+6 (10) (x2+xy+y2)-4xy(x2+y2)实践题答案实践题1 分解因式:-a2-2ab-b2实践详解各项提出符号,可用平方和公式.原式=-a2-2ab-b2=-( a2+2
9、ab+b2)= -(a+b)2实践题2分解因式实践详解原式=()2+2.+()2=(+)2实践题3 分解因式 a4-2a4b4+b4指点迷津把a4看成(a2)2,b4=(b2)2实践详解原式=(a2-b2)2=(a+b)2(a-b)2实践题4x(x-1)-y(y-1)指点迷津表面上看无法分解因式,展开后试试:x2-x-y2+y。然后重新分组。实践详解原式= x2-x-y2+y=(x2-y2)-(x-y)=(x+y)(x-y)-(x-y)=(x-y)(x+y-1)实践题5分解因式 3a3+5a2-2指点迷津三次项的系数为3,二次项的系数为5,提出公因式a2后。下一步没法进行了。所以我们将5a2拆成3a2 +2a2,化为 3a3+3a2+2a2-2.实践详解原式=3a3+3a2+2a2-2=3a2(a+1)+2(a2-1)=3a2(a+1)+2(a+1)(a-1)=(a+1)(3a2+2a-2)实践题6分解因式x2-6x+8实践详解原式=x2-6x+9-9+8=(x-3)2-1=(x-3)2-12=(x-3+1)(x-3-1)=(x-2)(x-4)实践题7分解因式a4+4原式=a4+4a2+4-4a2=(a2+2)2-4a2=(a2+2+2a)(a2+2-2a)=(a2+2a+2)(a2-2a+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶艺课程设计论文
- 阿米巴管理课程设计
- 电力控制系统课程设计
- GB/T 31235-2024±800 kV直流输电线路金具技术规范
- 2024校企合作环境科学与工程专业共建合同3篇
- 2024智慧城市交通信号控制系统升级合同
- 二零二五年度电子商务与物流企业智能物流服务合同2篇
- 二零二五年新能源电池研发与生产合同6篇
- 2024泰安市环保行业劳动合同规范文件3篇
- 二零二五版互联网+高额抵押反担保合同3篇
- GB/T 45102-2024机采棉采收技术要求
- 2025年海南省盐业集团有限公司招聘笔试参考题库含答案解析
- 2024-2025学年成都市高一上英语期末考试题(含答案和音频)
- 2024年南通职业大学单招职业技能测试题库有答案解析
- 2024股权融资计划
- 西式面点师试题与答案
- 钢结构连廊专项吊装方案(通过专家论证)
- 50MWp渔光互补光伏电站项目锤桩施工方案
- 2025免疫规划工作计划
- 初二家长会课件下载
- 食品安全知识培训
评论
0/150
提交评论