下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、利用导数求参数的取值范围一已知函数单调性,求参数的取值范围类型1参数放在函数表达式上例 设函数二已知不等式在某区间上恒成立,求参数的取值范围类型参数放在不等式上例3.已知(1)求、的值及函数的单调区间(2)若对恒成立,求的取值范围类型2参数放在区间上例已知三次函数图象上点(1,8)处的切线经过点(3,0),并且在x=3处有极值.(1)求的解析式.(2)当时, >0恒成立,求实数m的取值范围.分析:(1)基础训练:三知函数图象的交点情况,求参数的取值范围例5.已知函数处取得极值(1) 求函数的解析式.(2) 若过点可作曲线y=的三条切线,求实数m的取值范围.略解(1)求得(2)设切点为总结
2、:从函数的极值符号及单调性来保证函数图象与x轴交点个数.基础训练:变式2:若函数在上单调递增,求的取值范围。变式3:已知函数,若在区间上是增函数,求的取值范围。变式4:已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围变式1:已知恒成立,求实数的取值范围高考真题演练(2017年理21)已知函数(1) 讨论的单调性;(2) 若有两个零点,求的取值范围。(2017年文21)已知函数(1)讨论的单调性;(2)若,求的取值范围。(2017年文科14)曲线在点处的切线方程为 。(2016年文、理21) 已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.(2014年文科21) 设函数,曲线处的切线斜率为0(1) 求b;(2) 若存在使得,求的取值范围。(2014年理科21)设函数,曲线在点(1,处的切线为. ()求; ()证明:.(2013年理科21)已知函数f(x)x2axb,g(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牛羊养殖合伙协议
- 设备租赁押金协议
- 按揭贷款税务规划服务协议
- 互联网金融服务保函协议书
- 企业活动活动车辆租赁合同范本
- 代持股份协议书样本
- 仓储物流抵押融资合同
- 人力资源事务所劳动合同
- 个人护理电器店导购员聘用合同
- 人力资源副专员劳动合同
- 2024-2030年国内水泥行业市场发展分析及发展前景与投资机会研究报告
- 期中试卷(试题)-2024-2025学年人教版数学六年级上册
- 德育核心素养课题研究报告
- 2024秋期国家开放大学本科《国际私法》一平台在线形考(形考任务1至5)试题及答案
- 电台主持人合作协议
- 2024-2025学年高一上学期期中考试动员主题班会课件
- 2024年秋新沪科版物理八年级上册 实践 创作七彩梦幻般的彩虹 教学课件
- 【乡村振兴视域下农村生态环境治理的重要性及优化对策(论文)4100字】
- 国家工作人员学法考法知识考试题及答案
- 第18课 我的白鸽 课件 2024-2025学年统编版语文七年级上册
- 2024至2030年中国气管插管市场前景及融资战略咨询报告
评论
0/150
提交评论