


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习过程知识点1:正角、负角、零角概念、终边相同的角师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它等于300与7500;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢? 生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。终边相同的角相差3600的整数倍。例如:7500=23600+300;-6900=-23600+300。那么除了这些角之外,与300角终边相同的角还有:33600+300-33600+30043600+300-43600+300,由此,我们可以用S=|=k3600+300
2、,kZ来表示所有与300角终边相同的角的集合。师:那好,对于任意一个角,与它终边相同的角的集合应如何表示?生:S=|=+k3600,kZ,即任一与角终边相同的角,都可以表示成角与整数个周角的和。知识点2:弧度制弧度制另一种度量角的单位制 它的单位是rad 读作弧度orC2rad1radrl=2roAAB 定义:长度等于半径长的弧所对的圆心角称为1弧度的角。 如图:AOB=1rad AOC=2rad 周角=2prad 360=2prad 180=p rad 1= 1 正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02 角a的弧度数的绝对值 (为弧长,为半径)3 用角度制和弧度制来度量零角
3、,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。学习结论1正角、负角、零角概念正角:把按逆时针方向旋转所形成的角叫正角负角:顺时针方向旋转所形成的角叫负角零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。终边相同的角的集合:对于任意一个角,与它终边相同的角的集合表示为;S=|=+k,kZ,即任一与角终边相同的角,都可以表示成角与整数个周角的和。2弧度制:正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0角a的弧度数的绝对值 (为弧长,为半径)360=2prad 180=p rad 1= 典型例题例1、用集合表示:(1)各象限的角组成的集合
4、(2)终边落在 轴右侧的角的集合解析:(1) 第一象限角:|k360ok360o+90o,kZ第二象限角:|k360o+90ok360o+180o,kZ第三象限角:|k360o+180ok360o+270o,kZ第四象限角:|k360o+270ok360o+360o ,kZ(2)在 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得 , ,故 轴右侧角的集合为 说明:一个角按顺、逆时针旋转 ( )后与原来角终边重合,同样一个“区间”内的角,按顺逆时针旋转 ( )角后,所得“区间”仍与原区间重叠例2、在 间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2) ;(3) 解析:(1) 与 角终边相同的角是 角,它是第三象限的角;(2) 与 终边相同的角是 ,它是第四象限的角;(3) 所以与 角终边相同的角是 ,它是第二象限角例3、利用弧度制证明扇形面积公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兽医社会化服务平台对动物医学专业建设的影响
- 企业推进业财融合的策略与必要性分析
- 2024年陕西特岗教师招聘真题
- 2024年山西省考录公务员真题
- 江苏省卫生健康委员会所属事业单位招聘笔试真题2024
- 工匠精神视角下苗医技能型人才的培养创新
- 基于大数据的乡村振兴风险预测与评估
- 信贷业务管理制度
- 修改食堂管理制度
- 公司品鉴室管理制度
- 2021年贵州特岗教师招聘考试英语真题及答案
- 人民币收藏知识
- 救护车驾驶培训
- 基层公共法律服务的困境与改进对策研究
- 残疾人电子商务培训
- GB/T 45148-2024数字文化馆资源和技术基本要求
- 提高处方合格率管理
- 云南教育强省建设规划纲要(2024-2035年)知识培训
- 山体护坡施工技术方案
- QC/T 1211-2024乘用车车门内开拉手总成
- 2025年江苏省建筑安全员A证考试题库及答案
评论
0/150
提交评论