版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面的基本性质(二) 平面的基本性质是立体几何中演绎推理的逻辑依据以平面的基本性质证明诸点共线、诸线共点、诸点共面是立体几何中最基础的问题,既加深了对平面基本性质的理解,又是今后解决较复杂立体几何问题的基础一、素质教育目标(一)知识教学点掌握利用平面的基本性质证明诸点共面、诸线共面、三点共线、三线共点问题的一般方法1证明若干点或直线共面通常有两种思路(1)先由部分元素确定若干平面,再证明这些平面重合,如例1之;(2)先由部分元素确定一个平面,再证明其余元素在这平面内,如例1之2证明三点共线,通常先确定经过两点的直线是某两个平面的交线,再证明第三点是这两个平面的公共点,即该点分别在这两个平面内,
2、如例23证明三线共点通常先证其中的两条直线相交于一点,然后再证第三条直线经过这一点,如练习(二)能力训练点通过严格的推理论证,培养逻辑思维能力,发展空间想象能力(三)德育渗透点通过对解题方法和规律的概括,了解个性与共性特殊与一般间的关系,培养辩证唯物主义观点,又从有理有据的论证过程中培养严谨的学风二、教学重点、难点、疑问及解决办法1教学重点(1)证明点或线共面,三点共线或三线共点问题(2)证明过程的书写格式与规则2教学难点(1)画出符合题意的图形(2)选择恰当的公理或推论作为论据3解决办法(1)教师完整板书有代表性的题目的证明过程,规范学生的证明格式(2)利用实物,摆放成符合题意的位置三、学生
3、活动设计动手画图并证明四、教学步骤(一)明确目标1学会审题,根据题意画出图形,并写“已知、求证”2论据正确,论证严谨,书写规范3掌握基本方法:反证法和同一法,学习分类讨论(二)整体感知立体几何教学中,对学生进行推理论证训练是发展学生逻辑思维能力的有效手段首先应指导学生学会审题,包括根据题意画出图形,并写出已知、求证其次,推理的依据是平面的基本性质,要引导学生确定平面由于学生对立体几何中的推理颇不熟练,因此宜采用以启发为主,边讲边练的教学方式教师在讲解时,应充分展开思维过程,培养学生分析空间问题的能力,在板书时,应复诵公理或推论的内容,加深对平面基本性质的理解(三)重点、难点的学习与目标完成过程
4、A复习与讲评师:我们已学习了平面的基本性质,那么具备哪些条件时,直线在平面内?(生回答公理1,教师板画图120示意)师:具备哪些条件可以确定一个平面?(生4人回答,教师板画图121示意)师:上一节课后布置思考证明推论3,现在请同学们共同讨论这个证明过程已知:直线ab求证:经过a、b有且只有一个平面证明:“存在性”ab,a、b在同一平面内(平行线的定义)“唯一性”在直线a上作一点A假设过a和b还有一个平面,则A那么过b和b外一点A有两个平面和这与推论1矛盾注:证唯一性,用了“反证法”B例题与练习师:先看怎样证几条线共面例1求证:两两相交而不过同一点的四条直线必在同一平面内分析:四条直线两两相交且
5、不共点,可能有两种:一是有三条直线共点;二是没有三条直线共点,故而证明要分两种情况(1)已知:daP,dbQdcR,a、b、c相交于点O求证:a、b、c、d共面证明:daP,过d、a确定一个平面(推论2)同理过d、b和d、c各确定一个平面、Oa,Ob,Oc,O,O,O平面、都经过直线d和d外一点O、重合a、b、c、d共面注:本题的方法是“同一法”(2)已知:daP,dbQ,dcR,abM,bcN,acS,且无三线共点求证:a、b、c、d共面证明:daP,d和a确定一个平面(推论2)abM,dbQ,M,Qa、b、c、d四线共面注:让学生从实物摆放中得到四条直线的两种位置关系分类讨论时,强调要注意
6、既不要重复,又不要遗漏结合本例,说明证诸线共面的常用方法例2如图125,已知空间四边形ABCD中,E、F、G、H分别是AB、AD、BC、CD上的点,且EF交GH于P求证:P在直线BD上分析:易证BD是两平面交线,要证P在两平面交线上,必须先证P是两平面公共点已知:EFGHP, EAB、 FAD, GBC, HCD,求证:B、D、P三点共线证明:ABBDB,AB和BD确定平面ABD(推论2)AAB,DBD,EAB,FAD,EFGHP,P平面ABD同理,P平面BCD平面ABD平面BCDBDPBD即B、D、P三点共线注:结合本例,说明证三点共线的常规思路练习:两个平面两两相交,有三条交线,若其中两条
7、相交于一点,证明第三条交线也过这一点分析:虽说是证三线共点问题,但与例2有异曲同工之处,都是要证点P是两平面的公共点已知:如图1-26,=a,b,c,bcp求证:pa证明:bcp,pbb,p同理,p又=a,pa师:以上例、习题分别证明了四线共面三点共线和三线共点问题,这只是证明这类问题中的个例,根据不同的条件有不同的分析问题和解决问题的过程,但也具有一般的思路和方法除了例1、例2两类问题的常用方法外,本练习是证三线共点问题,也有常用证法(将知识教学点中所列三条用幻灯显示)(四)总结、扩展本课以练习为主,学习了线共面、点共线,线共点的一般证明方法和分类讨论的思想证明依据是平面的基本性质,数学方法有反证法和同一法,这也是这一单元的主要证明方法在证明的书写中,要求推论有据,书写规范五、布置作业1课本习题(略)2求证:两两相交的三条直线必在同一个平面内3已知:ABC在平面外,三角形三边AB、AC、BC所在直线分别交于M、N、R,求证:M、N、R三点共线4如图127,在正方体ABCDA1B1C1D1中,点E、F分别是接AA1、CC1的中点,求证:点D1、E1、F1、B共面(提示:证明空间若干个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新建加油站钢筋施工方案及流程
- 招标货物运输服务招标信息
- 房屋买卖合同中的保证人角色解读
- 建筑工地锚索分包劳务协议
- 爱的无条件诺言
- 砌筑分包工程劳务合作协议
- 月嫂服务合同签订要点
- 棉拖鞋生产协议
- 房屋预售合同买卖风险
- 绿色有机大米和食用油订购合同
- 2024年秋国家开放大学会计信息系统(本)客观题及答案
- 在线招聘平台人才匹配算法优化与应用推广
- 重庆B卷历年中考语文现代文阅读之非连续性文本阅读5篇(含答案)(2003-2023)
- 干部任免审批表样表
- DB62T 4872-2024 养老护理员培训基地建设规范
- 2024年大学班主任工作总结经典版(4篇)
- 冬季防冻防滑防火安全教育主题班会市公开课一等奖省赛课微课金奖课件
- 四川省绵阳市2023-2024学年高一上学期期末检测英语试题(解析版)
- 《生活中的比》(教学设计)-2023-2024学年北师大版数学六年级上册
- 中医内科学智慧树知到答案2024年浙江中医药大学
- 都江堰卫生系统考试真题
评论
0/150
提交评论