版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1几 个 基 本 概 念体系的计算自由度无多余约束的几何不变体系的组成规则分析举例2一、构造分析的目的1、研究结构 正确的连接方式,确保所设计的结构能承受荷载,维持平衡,不至于发生刚体运动。2、在结构计算时,可根据其几何组成情况,选择适当的计算方法;分析其组成顺序,寻找简便的解题途径。二、体系的分类:在忽略变形的前提下,体系可分为两类:1、几何不变体系:在任何外力作用下,其形状和位置都不会改变。 图 b 图a2、几何可变体系:在外力作用下,其形状或位置会改变。 2.1 构造分析的几个基本概念3几何可变体系又可分为两种:(1)几何常变体系:受力后可发生有限位移。(2)几何瞬变体系:受力后可发生微
2、量位移。APANNPNNPAP是微量Y=0,N=0.5P/sin由于瞬变体系能产生很大的内力, 故几何常变体系和几何瞬变体系不能作为建筑结构使用.只有几何不变体系才能作为建筑结构使用! 4三、自由度:所谓体系的自由度是指体系运动时,可以独立改变的几何参数的数目; 即确定体系位置所需独立坐标的数目。1、平面内一点个自由度;xyyx图aX oyyx图b2、平面内一刚片个自由度;23四、约束:在体系内部加入的减少自由度的装置 多余约束:不减少体系自由度的约束称为多余约束。a注意:多余约束将影响结构的注意:多余约束将影响结构的 受力与变形。受力与变形。A 51、单链杆:仅在两处与其它物体用铰相连,不论
3、其形状和铰的位置如何。 一根链杆可以减少体系一个自由度,相当于一个约束。!加链杆前3个自由度加链杆后2个自由度 62、单铰: 联结 两个 刚片的铰加单铰前体系有六个自由度xy加单铰后体系有四个自由度单铰可减少体系两个单铰可减少体系两个自由度相当于两个约束自由度相当于两个约束3、虚铰(瞬铰)AO 联结两刚片的两根不共线的链杆相当于联结两刚片的两根不共线的链杆相当于一个单铰即瞬铰一个单铰即瞬铰12C单铰瞬铰定轴转动平面运动! 7联结三个或三个以上刚片的铰AB先有刚片A,然后以单铰将刚片B联于刚片A, 再以单铰将刚片C联刚片于A上 也可以理解加复铰前三个刚共有九个自由度xy C 所以联结三个刚片的复
4、铰相当于两个单铰,减少体系四个约束。 , 加复铰后还剩图示五个自由度。4、复铰(重铰) 联结n个刚片的复铰相当于n-1个单铰,相当于 2(n-1)个约束! 85、单刚结点: 将两刚片联结成一个整体的结点图示两刚片有六个自由度 一个单刚结点可减少三个自一个单刚结点可减少三个自由度相当于三个约束由度相当于三个约束。加刚联结后有三个自由度刚结点将刚片连成整体(新刚片)。若是发散的,无多余约束,若是闭合的,则每个无铰封闭框都有三个多余约束。两个多余约束一个多余约束 9一个平面体系通常都是由若干部件(刚片或结点)加入一些约束组成。按照各部件都是自由的情况, 算出各部件自由度总数, 再算出所加入的约束总数
5、, 将两者的差值定义为:体系的计算自由度W。即:W=(各部件自由度总数)(全部约束总数)如刚片数m,单铰数n,支承链杆数r,则W=3m (2n+r)注意注意:1、复连接要换算成单连接。连四刚片 n=3连三刚片 n=2连两刚片 n=1 2、刚接在一起的各刚片作为一大刚片。如带有a个无铰封闭框,约束数应加 3a 个。 3、铰支座、定向支座相当于两个支承链杆, 固定端相三于个支承链杆。! 2.2体系的计算自由度10m=1,a=1,n=0 ,r=4+3210则:W=3m2n r 3a =3110 31 10m=7,n=9,r=3W=3m2nr =37293 =0 11对于铰接链杆体系也可将结点视为部件
6、,链杆视为约束,则:W=2jbr式中:j为结点数;b为链杆数;r支承链杆数例a:j=6;b=9;r=3。所以:W=2693=0ABCDEF 例b:j=6;b=9;r=3。所以:W=2693=0 12注意:1、W并不一定代表体系的实际自由度,仅说明了体系必须的约束数够不够。即:W0 体系缺少足够的约束,一定是几何可变体系。W=0 实际约束数等于体系必须的约束数W0 体系有多余约束不能断定体系是否几何不变由此可见:W0 只是保证体系为几何不变的必要条件,而不是充分条件。2、实际自由度S、计算自由度W和多余约束n之间的关系:S=(各部件自由度总数)(非多余约束数) =(各部件自由度总数)(全部约束数
7、多余约束数) =(各部件自由度总数)(全部约束数)+(多余约束数)由此可见:只有当体系上没有多余约束时,计算自由度才是 体系的实际自由度!+ n所以: S = WWWWW 13图a为一无多余约束的几何不变体系ABC图a将杆AC,AB,BC均看成刚片,一、三刚片以一、三刚片以不在一条直线上的三铰不在一条直线上的三铰 相联,组成无多余约束的几何不相联,组成无多余约束的几何不 变体系。变体系。三三铰共线瞬变体系三刚片以三对平行链杆相联瞬变体系两平行链杆于两铰连线平行, 瞬变体系 就成为三刚片组成的无多余约束的几何不变体系 2.3无多余约束几何不变体系的组成规则无多余约束几何不变体系的组成规则14图a
8、为一无多余约束的几何不变体系A C将杆AC、BC均看成刚片,杆通过铰 瞬变体系 二、两刚片以二、两刚片以一铰及一铰及不通过不通过该铰的一根链该铰的一根链杆杆相联组成无多余相联组成无多余约束的几何不变体系约束的几何不变体系 。AB图a 就成为两刚片组成的无多余约束几何不变体系B图b 三、两刚片以三、两刚片以不互相平行,也不相交于一点的三根链杆不互相平行,也不相交于一点的三根链杆相相联,组成无多余约束的几何不变体系。联,组成无多余约束的几何不变体系。 瞬变体系瞬变体系常变体系 A a 15 16ABC将BC杆视为刚片, 该体系就成为一刚片于一点相联 四、一点与一刚片用四、一点与一刚片用两根不共线两
9、根不共线的链杆的链杆相联,组成无多余约束的几何相联,组成无多余约束的几何不变体系。不变体系。A12两根共线的链杆联一点 瞬变体系两根不共线的链杆联结一点称为二元体。 在一体系上增加(或减去)二元体不改变在一体系上增加(或减去)二元体不改变原体系的机动性,也不改变原体系的自由度。原体系的机动性,也不改变原体系的自由度。 17(a)(b)(c)(e)(d)四个规则可归结为一个三角形法则。 18规则三刚片必要约束数对约束的布置要求瞬变体系一二三四连接对象两刚片一点一刚片六个三铰(实或虚)不共线三种三个链杆不过铰一种三链杆不平行也不交于一点两种两个两链杆不共线一种1 1、去掉二元体,将体系化简单,然后
10、再分析。、去掉二元体,将体系化简单,然后再分析。依次去掉二元体ABCDEFG后剩下大地,故该体系为几何不变体系且无多余约束。ABCDEFG 几种常用的分析途径19依次去掉二元体A,B,C,D后剩下大地。故该体系为无多余约束的几何不变体系2 2、如上部体系于基础、如上部体系于基础用满足要求三个约用满足要求三个约束相联可去掉基础,束相联可去掉基础,只分析上部。只分析上部。抛开基础,只分析上部,上部体系由左右两刚片用一铰和一链杆相连。故:该体系为无多余约束的几何不变体系。AFCGBEDACBD 20该体系为无多余约束的 几何不变体系。抛开基础,只分析上部。在体系内确定三个刚片。三刚片用三个不共线的
11、三铰相连。 21例5、抛开基础,分析上部,去掉二元体后,剩下两个刚片用两根杆相连,故:该体系为有一个自由度 的几何可变体系.ABDECFABCFD3 3、当体系杆件、当体系杆件数较多时,将刚数较多时,将刚片选得分散些,片选得分散些,用链杆相连,用链杆相连,而不用单铰相连。而不用单铰相连。例6、O12O23O13如图示,三刚片用三个不共线的铰相连,故:该体系为无多余约束的几何不变体系 22例几何瞬变体系(,)(,)(,)(,)(,)(,)如图示,三刚片以共线三铰相连三刚片以三个无穷远处虚铰相连组成瞬变体系 23(1,3)(1,2)(2,3)三刚片用不共线三铰相连,故无多余约束的几何不变体系。例4
12、、4 4、由一基本、由一基本刚片开始,逐刚片开始,逐步增加二元体,步增加二元体,扩大刚片的范扩大刚片的范围,将体系归围,将体系归结为两个刚片结为两个刚片或三个刚片相或三个刚片相连,再用规连,再用规则判定。则判定。 245 5、由基础开始逐件组装、由基础开始逐件组装有一个多余约束的几何不变体系无多余约束几何不变体系 25 6 6、刚片的等效代换:在不改变刚片与周围的连结方式、刚片的等效代换:在不改变刚片与周围的连结方式的前提下,可以改变它的大小、形状及内部组成。即用一个的前提下,可以改变它的大小、形状及内部组成。即用一个等效(与外部连结等效)刚片代替它。等效(与外部连结等效)刚片代替它。有一个多
13、余约束的几何不变体系两个刚片用三根平行不等长的链杆相连,几何瞬变体系 26 (, )(,)(,)(,)(, )(, )(, )(,)(,)瞬变体系27ABCDEFGH (,)(, )(, ) 无多余约束的几何不变体系无多余约束的几何不变体系瞬变体系(, )(, )(, )28 瞬变体系 无多余约束的几何不变体系变体系29几种常用的分析途径几种常用的分析途径 1 1、去掉二元体,将体系化简单,然后再分析。、去掉二元体,将体系化简单,然后再分析。 2 2、如上部体系与基础用满足要求的三个约束相联可去掉、如上部体系与基础用满足要求的三个约束相联可去掉基础,只分析上部。基础,只分析上部。 3 3、当体系杆件数较多时,将刚片选得分散些,用链杆组成、当体系杆件数较多时,将刚片选得分散些,用链杆组成的虚铰相连,而不用单铰相连。的虚铰相连,而不用单铰相连。 4 4、由一基本刚片开始,逐步增加二元体,扩大刚片的范、由一基本刚片开始,逐步增加二元体,扩大刚片的范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论