版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、BS九(上)教学课件第一章第一章 特殊平行四边形特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质1.了解菱形的概念及其与平行四边形的关系;2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关问题.(难点)学习目标问题:什么样的四边形是平行四边形?它有哪些性质呢?平行四边形的性质:边:对边平行且相等.对角线:相交并相互平分.角:对角相等,邻角互补.活动: 观察下列图片, 找出你所熟悉的图形. 问题1: 观察上图中的这些平行四边形,你能发现它们有什么 样的共同特征?平行四边形菱形菱形:有一组邻边相等的平行四边形叫做菱形.菱形的概念及其与平行四边形的关系1 菱形是特殊的平行
2、四边形,它具有平行四边形的所有性质,但平行四边形不一定是菱形.问题2: 菱形与平行四边形有什么关系?归纳归纳: :平行四边形菱形平行四边形做一做请同学们用菱形纸片折一折,回答下列问题: (1)菱形是轴对称图形吗?如果是,它有几条对称 轴?对称轴之间有什么位置关系? (2)菱形中有哪些相等的线段?菱形的性质21.菱形是轴对称图形,有两条对称轴(对称轴为直线AC和直线BD).2.菱形四条边都相等(AB=BC=CD=AD).3.菱形的对角线互相垂直(ACBD).ABCOD 发现菱形的性质已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交 于点O.求证:(1)AB = BC = CD =A
3、D; (2)ACBD. 证明菱形的性质证明:(1)四边形ABCD是菱形, AB = CD,AD = BC(菱形的对边相等). 又AB=AD; AB = BC = CD =AD.ABCOD求证:菱形的四条边相等,对角线互相垂直. 思考:思考:菱形的一条对角线所分成的两个内角有什么关系?试证明AC平分BAD和BCD, BD平分ABC和ADC.(2)AB=AD, ABD是等腰三角形.又四边形ABCD是菱形, OB=OD.在等腰三角形ABD中, OB=OD, AOBD, 即ACBD.ABCOD 菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形
4、.边:四条边都相等.对角线:互相垂直. 角:对角相等,邻角互补.边:对边平行且相等.对角线:相交并相互平分.1.如图,在菱形ABCD中,两条对角线AC与BD相交于点O,图中的等腰三角形有_,直角三角形有_ ,而且它们_(“全等”或“不全等”). 抢答:2.菱形具有而平行四边形不一定具有的性质是( ) A.内角和为360 B.对角线互相垂直 C.对边平行 D.对角线互相平分ABD, BCD,ABC,ADCABO,ADO,BCO,CDO全等BBACDO4 cm6 cm 归纳:菱形中已知边长或对角线,求相关长度问题,一般利用菱形的对角线垂直平分,再结合勾股定理解题. 已知菱形ABCD中,对角线AC、
5、BD相交于点O,AB=5cm,BD=8cm.则:(1)BO=_; (2)AC=_.例1 如图,在菱形ABCD中,对角线AC与BD相交于点O,BAD=60,BD =6,求菱形的边长AB和对角线AC的长.解:四边形ABCD是菱形, ACBD(菱形的对角线互相垂直), OB=OD= BD = 6=3(菱形的对角线互相平分).在等腰三角形ABC中,BAD=60,ABD是等边三角形.AB = BD = 6. 1212ABCOD例2在RtAOB中,由勾股定理,得OA2+OB2=AB2,OA = = =AC=2OA= (菱形的对角线相互平分).22ABOB226333.63ABCOD归纳:归纳:若菱形有一个
6、内角为60,那么60角的两边与较短的对角线可构成等边三角形,且两条对角线把菱形分成四个全等的含30角的直角三角形.1.菱形具有而一般平行四边形不具有的性质是 ( ) A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等2.如图,菱形的两条对角线长分别是6和8,则此菱形的周长是 ( ) A.40 B.32 C.24 D.20CD3.在菱形ABCD中,AEBC,AFCD,E、F分别为BC,CD的中点,那么EAF的度数是 ( )A.75 B.60 C.45 D.30BFECABD6.已知菱形的一条对角线与边长相等,则菱形的四个内角度数分别为_. 4.已知菱形的周长是12cm,那么它的边长是_.5.菱形ABCD中ABC120 ,则BAC_.ABCOD3cm3060、60、120、1207.如图,在菱形ABCD中,对角线AC与BD 相交于点O. 已知AB=5cm,AO=4cm,求BD的长.ABCOD解:四边形ABCD是菱形, ACBD (菱形的两条对角线互相垂直), AO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《电子技术基础(2)》2022-2023学年期末试卷
- 淮阴工学院《资本运营》2023-2024学年第一学期期末试卷
- 淮阴师范学院《电机与拖动》2023-2024学年期末试卷
- DB5111T48-2024乐山市餐饮食品中异物防控指南
- DB3303T+079-2024《网络餐饮“阳光厨房”建设运行规范》
- 卫生材料的安全生产与质量控制考核试卷
- 水利工程的调度与规划考核试卷
- 白酒的企业品牌与社会责任考核试卷
- 构建和谐工作氛围重视企业安全生产培训考核试卷
- 塑料制品在包装领域的应用与创新考核试卷
- 2024年中考英语题型复习:阅读理解(含练习题及答案)
- 2024-2030年中国农业机械产业发展格局与需求趋势预测研究报告
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- HYT 087-2005 近岸海洋生态健康评价指南
- 人教版五年级美术学科试卷(附带答案和考察要点解说)
- 士官生生涯规划
- 青年你为什么要入团-团员教育主题班会-热点主题班会课件
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- 内蒙古呼和浩特市回民区2023-2024学年七年级上学期期中语文试题
- 2024年畜禽屠宰企业兽医卫生检验人员考试试题
- (高清版)WST 433-2023 静脉治疗护理技术操作标准
评论
0/150
提交评论