版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六章立体几何考点测试38空间几何体的结构特征及三视图和直观图高考概览考纲研读1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图一、基础小题1三视图如图所示的几何体是()A三棱锥 B四棱锥 C四棱台 D三棱台答案B解析由三视图可作几何体如图,可知选B.2以下关于几何体的三视图的论述中,正确的是()A球的三视图总是三个全等的圆B正方体的三视图总是三个全等的正方形C水平放置的正四面体的三视图都是正三角形D水平放置的圆台的俯
2、视图是一个圆答案A解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆3用一个平行于水平面的平面去截球,得到如右图所示的几何体,则它的俯视图是() 答案B解析俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.4用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴已知四边形ABCD的面积为2 cm2,则原平面图形的面积为()A4 cm2 B4 cm2 C8 cm2 D8 cm2答案C解析依题意可知BAD45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的2倍,所以原平面图形的面积为8 cm
3、2.5给出下列命题:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;有一个面是多边形,其余各面都是三角形的几何体是棱锥;直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;棱台的上、下底面可以不相似,但侧棱长一定相等其中正确命题的个数是()A0 B1 C2 D3答案A解析错误,只有这两点的连线平行于旋转轴时才是母线;错误,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;错误,棱台的上、下底面是相似且对应边平行的
4、多边形,各侧棱延长线交于一点,但是侧棱长不一定相等6如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A三棱锥 B三棱柱 C四棱锥 D四棱柱答案B解析由三视图可知该几何体应为横向放置的三棱柱(如图所示)故选B.7某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是() 答案D解析A图是两个圆柱的组合体的俯视图;B图是一个四棱柱与一个圆柱的组合体的俯视图;C图是一个底面为等腰直角三角形的三棱柱与一个四棱柱的组合体的俯视图,采用排除法,故选D.8将正方体(如图a所示)截去两个三棱锥,得到图b所示的几何体,则该几何体的侧视图为()答案B解析还原正方体后,将
5、D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线9已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A1 B2 C3 D4答案D解析由题意知,三棱锥放置在长方体中如图所示,利用长方体模型可知,此三棱锥的四个面全部是直角三角形故选D.10在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2)给出编号为的四个图,则该四面体的正视图和俯视图分别为()A和 B和 C和 D和答案D解析由题意得,该几何体的正视图是一个直角三角形,三个
6、顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2),且内有一条虚线(一顶点与另一直角边中点的连线),故正视图是;俯视图即在底面的射影,是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是.11一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()A.a2 B2a2 C.a2 D.a2答案B解析根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S之间的关系是SS,本题中直观图的面积为a2,所以原平面四边形的面积等于2a2.故选B.12已知一个正三棱柱的所有棱长均相等,其侧(左
7、)视图如图所示,那么此三棱柱正(主)视图的面积为_答案2解析由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长因为侧(左)视图中三角形的边长为2,所以高为,所以正视图的面积为2.二、高考小题13中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是() 答案A解析观察图形易知卯眼处应以虚线画出,俯视图为,故选A.14某圆柱的高为2,底面周长为16,其三视图如右图圆柱表面上的点M在正视图上的对应点为A,圆
8、柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A2 B2 C3 D2答案B解析根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为2,故选B.15某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A1 B2 C3 D4答案C解析由三视图得四棱锥的直观图如图所示其中SD底面ABCD,ABAD,ABCD,SDADCD2,AB1.由SD底面ABCD,AD,DC,AB底面ABCD,得SDAD,SDDC,SDAB,故SDC,SDA
9、为直角三角形,又ABAD,ABSD,AD,SD平面SAD,ADSDD,AB平面SAD,又SA平面SAD,ABSA,即SAB也是直角三角形,从而SB3,又BC.SC2,BC2SC2SB2,SBC不是直角三角形,故选C.16某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10 B12 C14 D16答案B解析由多面体的三视图还原直观图如图该几何体由上方的三棱锥ABCE和下方的三棱柱BCEB1C1A1构成,其中面CC1A1A和面BB1A1A是梯形,则梯形的面积之和为2
10、15;12.故选B.17某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A3 B2 C2 D2答案B解析根据三视图可得该四棱锥的直观图(四棱锥PABCD)如图所示,将该四棱锥放入棱长为2的正方体中由图可知该四棱锥的最长棱为PD,PD2.故选B.18一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案B解析由几何体的直观图知,该几何体最上面的棱横放且在中间的位置上,因此它的俯视图应排除A,C,D,经验证B符合题意,故选B三、模拟小题19如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是()答案C解析该几何体的体积为,且由题意知高为1,故底面积为
11、,结合选项知选C20已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为()A5 B4 C3 D2答案B解析由题知可以作为该几何体俯视图的图形为,故选B21已知某几何体的正视图和俯视图是如图所示的两个全等的矩形,给出下列4个图形:其中可以作为该几何体的侧视图的图形序号是()ABCD答案D解析符合题意的几何体可以是如下几何体:由此可知选D22如图,在正方体ABCDA1B1C1D1中,已知E是棱A1B1的中点,用过点A,C,E的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()答案A解析依题意,截后的多面体如图所示,其中F为棱B1C1的中点,
12、故选A23一只蚂蚁从正方体ABCDA1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()ABCD答案D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为;若把平面ABCD和平面CDD1C1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为而其他几种展开方式对应的正视图在题中没有出现故
13、选D24如图,在三棱柱ABCABC中,已知侧棱AA底面ABC,且ABC是正三角形,若点P是上底面ABC内的任意一点,则三棱锥PABC的正视图与侧视图的面积之比为(注:以垂直于平面ACCA的方向为正视图方向)()AB C1 D答案D解析过点P作AC的垂线交AC于P,则P为P在平面ACCA上的投影取AC的中点B,则B为B在平面ACCA上的投影由此得正视图与侧视图如图所示设底面边长为a,AAb则S正ab,S侧×a×bab,故一、高考大题本考点在近三年高考中未涉及此题型二、模拟大题1一个几何体的三视图如图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形(1)请画出该几何
14、体的直观图,并求出它的体积;(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCDA1B1C1D1?如何组拼?试证明你的结论解(1)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥,其中底面ABCD是边长为6的正方形,高为CC16,故所求体积是V×62×672(2)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体,其拼法如图2所示证明:面ABCD、面ABB1A1、面AA1D1D为全等的正方形,于是VC1ABCDVC1ABB1A1VC1AA1D1D,故所拼图形成立2一个多面体的三视图和直观图如图1、图2所示,其中M,N分别是AB,AC的中点,G是DF上的一个动点,且DGDF(0<1)(1)求证:对任意的(0,1),都有GNAC;(2)当时,求证:AG平面FMC证明(1)由三视图与直观图,知该几何体是一个直三棱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年海南卫生健康职业学院招聘 事业编制人员笔试真题
- 病案(病历)封存、启封制度
- 班班通培训方案
- 80大寿流程、主持词及发言稿
- 会计师事务所-人力资源-人才培养制度
- 语文小练笔课题方案
- 基础梁柱施工方案
- 墙板销售合同
- 第三章-钻井液的流变性
- MI-1904-生命科学试剂-MCE
- 2022版义务教育信息科技新课程标准试题(附答案)
- 高一历史(中外历史纲要上册)期中测试卷及答案
- 建筑工程竣工交付方案
- 矿区地下水动态长期观测技术规范
- 2024年福建省中考数学试卷真题解读及答案详解
- 2024年国家知识产权局商标审查协作中心招聘60人(高频重点提升专题训练)共500题附带答案详解
- 中东及非洲太阳能储能电池行业现状及发展机遇分析2024-2030
- 钢结构工程施工(第五版) 课件 单元七 钢结构施工安全
- 2024年济南市中区人民医院招考聘用实行人员控制总量备案管理工作人员【重点基础提升】模拟试题(共500题)附带答案详解
- 基于网络流量分析的威胁检测研究
- 2024家教服务三方协议
评论
0/150
提交评论