一级倒立摆系统分析报告_第1页
一级倒立摆系统分析报告_第2页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专业专注一级倒立摆的系统分析M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力?:摆杆与垂直向上方向的夹角9:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)倒立摆系统的模型建立对于上图的物理模型我们做以下假设:X:小车位置图1-2是系统中小车和摆杆的受力分析图O其中,N和P为小车与摆专业专注由摆杆水平方向的受力进行分析可以得到以下方程 0(1-2)即:0000(1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程:0000(1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行 分析,可以得出以下方程:杆相互

2、作用力的水平和垂直方向的分量注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图1-2小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:(1-1)图所示,图示方向为矢量正方向。图1-2是系统中小车和摆杆的受力分析图O其中,N和P为小车与摆专业专注0(1-5)0 0 0 0(1-6)000(1-7)专业专注利用力矩平衡方程可以有:注意:此方程中的力矩方向,由于B,0,0,所以等式前面含有负号。合并两个方程,约去P和N可以得到第二个运动方程:0 0 0(1-8)设0,假设?与1(单位是弧度)相比很小,即?vv1,则可以进行近似处理:0,0,(-) 。用u来代表

3、被控对象的输入力F,线性化后的两个运动方程如下:(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:(1-10)由于输出为角度?,求解方程组的第一个方程,可以得到:- - (1-11)或改写为:-(1-12)如果令,则有:(1-13)()如果将上式代入方程组的第二个方程,可以得到:000(1-7)专业专注(1-14)(1-15)专业专注整理后可得传递函数:其中假设系统状态空间方程为:(1-16)方程组对,解代数方程,可以得到解如下:(1-17)整理后可以得到系统状态空间方程:(1-18)由(1-9)的第一个方程为:对于质量均匀分布的摆杆可以有:(1-19)专业专注于是可以得

4、到:以上公式推理是根据牛顿力学的微分方程验证的 型参数如下:M小车质量1.096 Kgm摆杆质量0.109 Kgb小车摩擦系数0 .1N/m/secI摆杆转动轴心到杆质心的长度0.2 5mI摆杆惯量0.0034 kg*m*m将上述参数代入, 就可以得到系统的实际模型 摆杆角度和小车位移的传递函数:- (1-21)摆杆角度和小车加速度之间的传递函数为:- - (1-22)()摆杆角度和小车所受外界作用力的传递函数:化简可以得到:设X=x, , ,则有:(1-20)在实际系统中模专业专注(1-23)以外界作用力作为输入的系统状态方程:(1-24)以小车加速度作为输入的系统状态方程:(1-25)综述

5、可知以上就是一级倒立摆系统的模型建立过程,最终得出了实际模型的传递函数和状态空间方程。二、系统模型的转换以小车加速度作为输入的系统状态方程为例, 将系统状态方程转化 为能控标准型,能观标准型和约当标准型。由系统状态方程可知:专业专注1、转化为能控标准型 定出系统特征多项式: a=poly(A)a =1.0000-0.0000-29.4000由此可知a0=0, a1= 0, a2=-29.4, a3=0 b3=C*B b3 =0 0b2二C*A*B+a3*C*B b2 =1 b仁C*AA2*B+a3*C*A*B+a2*C*B bl =b0=C*AA3*B+a3*C*AA2*B+a2*C*Ab0

6、=-29.4000B+a1*C*B0专业专注0029.4000所以系统的能控标准型为:2、转化为能观标准型利用对偶性求出能观标准型为:3、转化为约当标准型 首先求出系统的特征值以及相应的特征向量:A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 00 1.000000000 00 00 1.0000专业专注求出变换矩阵V的逆: V仁i nv(V)Warning: Matrix is close to sin gular or badly scaled.Results may be in accurate. RCOND = 1.720635e-292.V1 =1.0e+291

7、 *000.00000.0000 V,D=eig(A)0 1.0000 -1.00000 0.00000.1814-0.181400.98340.98340D =5.4222000-5.42220000000000000,V表示相对应的特征向量0 0其中D表示A全部特征值构成的对角阵0专业专注00-0.00000.00000.00002.49480002.494800专业专注计算变换后的系数矩阵: A仁V1*A*VA1 =5.4222B1=V1*BB1 =1.0e+291 *0.00000.00002.49482.4948所以系统的约当标准型为:三、开环阶跃响应曲线及分析利用已知的状态空间方程

8、来进行阶跃响应分析 ,在MATLAB中可以写入以下命令:0.0000-5.42220.0000专业专注 A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0 B=0;1;0;3; C=1 0 0 0;0 1 0 0; D=0;0; step(A,B,C,D)File Edrt View Insert Tools Desktop Window Help1QQOO500060004&00 2CC00已IBQ|体|曾头的膜厨 T 尿|匡11Steo Response10050100Tirne (sec)专业专注150可以看出,在单位阶跃响应作用下,小车位置和摆杆角度都是发

9、散四、判断系统稳定性判断系统的稳定性可以利用根轨迹来判断,已知实际系统的开环传专业专注MATLAB键入如下命令来完成。 num二0.02725; den=0.0102125 0 -0.26705; z=roots (num)z =Empty matrix: 0-by-1 p=roots(de n)P =5.1136-5.1136 rlocus (nu m,de n)递函数为:,则其根轨迹图形可以利用专业专注oa| 傀脅凰M” Q| n s口可以看出系统没有零点,有两个极点,并且有一个极点为正。由画 出的根轨迹图形可以看出闭环传递函数的一个极点位于复平面的右半平面,这就意味着系统是一个不稳定的系

10、统。五、能控性和能观性分析对于系统的能控性和能观性分析 ,可以利用能控性秩判据和能观性 秩判据。能控性秩判据:对于n维连续时间线性时不变系统,构成能控性判 别矩阵:口File Edit View Insert Tools Desktop Window1 1_ _ _ _ -w-1 1-1 11RO-QI LOCUS-t-202Real Axis6D-AJecl-BeE-专业专注,则系统完全能控的充要条件为:能观性秩判据:对于n维连续时间线性时不变系统,构成能观性判专业专注3.0000088.2000 R仁ra nk(Qc)R1 =4 Qo二C;C*A;C*AA2;C*AA3Qo =10 0 0

11、别矩阵:,则系统完全能观的充要条件为:利用MATLAB键入以下命令来进行判断: A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0; B=0;1;0;3; C=1 0 0 0;0 1 0 0; D=0;0; Qc=B A*B AA2*B AA3*BQc =01.00001.00000088.203.0000专业专注0100010000000000000000000000 R2=ra nk(Qo)R2 =2可以看出,系统的完全能控矩阵的秩等于系统的状态变量维数 ,系 统的输出完全能观测矩阵的秩等于系统输出向量y的维数,所以系 统是可以完全能控完全能观测的系统。六、根轨迹校正以及仿真已知系统的传递函数:设计控制器使得调整时间;最大超调。计算整理可得超前校正装置的零点和极点分别为:;,由此可得校正后的传递函数:专业专注利用MATLAB命令观察校正后的根轨迹图形: clear:ntuiL=0.C2725;den=0.0Q2lZ5 0 -0.2670b;nLun.lead=-S. 92214 .denlead=-26. 4668:Z,P,I=tf2p(nutden):Za=2.numlead;Pa= P : denlead:rtuMy den2-2p2tf (_a, PafK): sys=tf tnuniS, dn2 :rlocus(sys)EJ ” 1Q!冋图中可以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论