ANSYS中BEAM使用方法_第1页
ANSYS中BEAM使用方法_第2页
ANSYS中BEAM使用方法_第3页
ANSYS中BEAM使用方法_第4页
ANSYS中BEAM使用方法_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、BEAM189 3 -D三节点梁:MP ME ST PR PRN DS DSS < > < > < > < > PP EME MFS产品限制BEAM189元素说明该BEAM189单元适合于分析细长到中等粗短/厚梁结构。该元素是基于Timoshenko梁理论,其中包括剪切变形效果。该元件提供无节制的翘曲和横截面的受限制翘曲的选项。该元素是在3 -D的二次三节点梁单元。用默认设置,六个自由度的发生在每一个节点,这些包括在x, y和z方向和旋转围绕x , y和z方向的平移。一个可选的第七个自由度(横截面的翘曲)是可用的。该元件是非常适合于线性

2、,大旋转,和/或大应变非线性应用。该元件的应力刚,默认情况下,在与NLGEOM ,ON任何分析。所提供的应力刚度使本单元能分析弯曲,横向及扭转稳定问题(用特征值屈曲或折叠的研究与弧长方法或非线性稳定) 。弹性,塑性,蠕变等非线性材料模型的支持。与此元素类型相关联的横截面可以是内置了部分引用一个以上的材料。图189.1 : BEAM189几何  BEAM189单元技术和使用建议BEAM189是基于Timoshenko梁理论,这是一个一阶剪切变形理论:横向剪切应变是通过横截面恒定的,也就是说,横截面保持平面和变形后的失真。该元件可用于纤细或粗壮的横梁。由于一阶剪切变形理论的局限

3、,细长到中等厚度的光束可以被分析。使用一个梁结构( GAL2 / (EI) )的长细比,判断该元素的适用性,其中:剪切模量一的横截面的面积L该成员的长度(而不是元素的长度)EI抗弯刚度使用一些全局距离的措施,而不是在单个元素的尺寸立足它计算出的比率。下图显示了悬臂梁受小费荷载横向剪切变形的估计。虽然结果不能外推到其他应用程序中,例如可以很好地充当一般准则。一个长细比大于30的建议。图189.2 :横向,剪切变形预测      长细比( GAL2 / ( EI ) )季莫申科 / 欧拉 - 伯努利251.120501.0601001.0

4、3010001.003这些元素都支持横向剪切力和横向剪切应变之间的弹性关系。您可以使用SECCONTROL命令覆盖的横向剪切刚度的默认值。BEAM189不使用高阶的理论来解释变化的剪切应力的分布。使用固体元素,如果这种影响必须加以考虑。BEAM189支持“内敛翘曲”分析,通过提供在每个梁节点第七自由度。默认情况下, BEAM189单元假定一个横截面的翘曲是足够小,它可能被忽略( KEYOPT(1) = 0)。您可以通过使用KEYOPT ( 1 ) = 1激活自由的翘曲程度。随着自由激活的翘曲度,每个节点有七个自由度: UX , UY , UZ , ROTX , ROTZ , ROTY和翘曲。用

5、KEYOPT(1) = 1,双力矩和bicurvature输出。不像其他的立方(埃尔米特)基于多项式的元素, BEAM189是基于二次多项式,因此,在规范的分布式压力负荷的偏移量是不allowed.BEAM189具有线性弯曲力矩的变化。网格的细化建议,以适应这种负荷。 BEAM189是计算效率高,并具有超收敛性质对于网格细化。例如,二次光束具有2点高斯积分是已知的相同的精度为埃尔米特元件。在实践中,当两个元素“抑制翘曲”走到一起成锐角,则需要夫妇的位移和旋转,但离开了面外翘曲脱钩。这通常是由具有两个节点的物理位置和使用的适当的约束实现的。这个过程是由ENDRELEASE命令,该命令解耦平面翘曲

6、的出用于与横截面相交的角度大于20度的任意的相邻的元件变得更容易(或自动) 。BEAM189允许改变在截面惯性属性轴向伸长的功能。默认情况下,该横截面面积的变化,使得该元件的体积变形后得以保留。默认值是适用于弹塑性应用。通过使用KEYOPT ( 2 ) ,您可以选择保留的横截面不变或刚性。缩放不是一般的非线性梁截面( SECTYPE , GENB )的选项。为一致的负载向量,比用于刚度矩阵采用较高阶积分规则质量矩阵和评价。这些元素同时支持一致和集中质量矩阵。避免使用LUMPM , ON作为BEAM189是一个高阶的元素。一致质量矩阵默认情况下使用。每单位长度的附加质量可以是输入与ADDMAS部

7、分控制。请参见“ BEAM189输入汇总” 。为扭转行为圣维南翘曲函数在未变形状态决定的,是用来甚至屈服后确定剪切应变。没有选项可用于在变形的构造重新计算分析和可能的局部塑性屈服的横截面中的横截面的扭转剪切配送。因此,大的非弹性变形,由于扭转载荷应及时治疗,并证实慎用。在这种情况下,使用固体或壳单元另类造型建议。BEAM189输入数据几何形状,节点位置,坐标系和压力指示此元素如图189.1 : BEAM189几何。 BEAM189是由节点I,J和K在全局坐标系中定义的。节点L是一个优选的方式来定义的元素的定向。有关定位节点和梁划分网格的信息,请参阅生成梁网凭借在建模和分网指南取向的节点。此外,

8、请参阅二次单元(中间节点)在同一手册,对用中间节点的。见LMESH和LATT命令描述的自动生成节点的详细信息。对于低阶光束的描述,请参阅BEAM188 。该元素也可以不朝向节点L。在这种情况下所定义,该元素x轴是从节点I(结束1)朝向节点J的(结束2)定向。当无取向节点时,该元素y轴的默认方向是自动计算的,以平行于全球XY平面。对于其中元件是平行于总体Z轴(或它的0.01 的坡度范围内)的情况下,该元素y轴方向平行于全局Y轴(如图所示) 。对于单元方向有关元素的x轴的用户控件,使用L节点选项。如果两个都定义,定向节点选项优先。方向节点L,如果使用的话,定义包含元素x和z -轴(如图所示)的平面

9、(与I和J) 。如果在一个大的偏转分析使用该元件,应注意的取向节点的L的位置仅用于初始定向元件。的自由度的数目取决于KEYOPT的值(1) 。当KEYOPT ( 1 )= 0 (默认) ,六个自由度发生在每一个节点。这些包括在x, y和z方向和旋转围绕x , y和z方向的平移。当KEYOPT ( 1 )= 1 ,自由度(横截面的翘曲)的第七度也被认为是。该元件是在空间中的一维的线元素。经由SECTYPE和SECDATA命令分开设置的横截面细节。 (见梁分析和横截面的结构分析指南中的说明。 ) A节与梁单元通过指定截面号( SECNUM )相关联。 A节数是一个独立的属性。除了恒定的横截面,你也

10、可以通过使用锥选项上SECTYPE命令定义一个锥形截面。 (有关详细信息,请参阅定义变截面梁。 )BEAM189忽略了与6.0版以后的任何真正的常量数据。用于限定所述横向剪切刚度看到SECCONTROL命令,附加质量。单元输入摘要如下在“ BEAM189输入汇总” 。BEAM189横断面BEAM189可以与这些横截面类型相关联:它定义梁截面( SECTYPE , BEAM )的几何结构标准库部分类型或用户的网格。梁的材料被定义成元素的属性(MAT ),或作为第积累部分(用于多材料的横截面) 。广义束横截面( SECTYPE , GENB ),其中广义应力广义应变的关系是直接输入。锥形束横截面(

11、 SECTYPE ,锥),其中一个标准库部分或用户定义网格梁的两端。标准库章节BEAM189是在使用SECTYPE和SECDATA若干节点数自动地设置有部分相关的量(面积整合,位置等)。每个部分被假定为九个节点的单元的预定数量的组件。各横截面单元具有四个积分点和每一个都可以与一个独立的材料类型相关联。图189.3 :横截面细胞  细胞在横截面的数目影响的部分特性和非线性应力 - 应变关系通过截面建模能力的准确性。该元件具有集成的嵌套结构(沿长度和横截面) 。当与元素相关联的材料具有弹性的行为或当温度在整个截面的变化,构计算在截面的积分点进行。对于更常见的弹性应用,该元素使用

12、的部分在单元积分点的预先计算的性能。然而,应力和应变计算在输出通在部分节点。如果该部分被分配子形状ASEC ,只有广义应力和应变(轴向力,弯矩,横剪,曲率,以及剪切应变)可用于输出。 3 -D等高线图和变形形状都没有。该ASEC亚型显示只是一道薄薄的长方形来验证梁的方向。 BEAM189对待ASEC如只用一个横截面的积分点部分类型。BEAM189是用于分析组合梁有帮助的, (即,那些制成的两片或多片材料连接在一起形成一个单一的,实心光束) 。件被认为是完全粘结在一起,因此,光束表现为一个单一的部件。多材料截面能力仅适用于其中一个光束行为的假设(季莫申科或伯努利 - 欧拉梁理论)成立。换句话说,

13、支持哪些是现有的Timoshenko梁理论的简单扩展。它可能的应用,如用于:双金属片梁用金属加固传感器,其中不同的材料层已沉积BEAM189不考虑弯曲和扭转的截面刚度水平的耦合。横向剪也视为非耦合方式。这可能对层状复合材料和夹层梁一个显著的效果,如果上篮是不平衡的。总是验证BEAM189的应用,无论是与实验或其他数值分析。由于核实后使用带建成部分的内敛翘曲选项。KEYOPT ( 15 )指定。 RST结果文件的格式。对于KEYOPT( 15 )= 0 ,该格式只提供一个在每个区段拐角节点平均的结果,因此,此选项通常适用于同质部分。对于KEYOPT ( 15 ) = 1 ,格式给出一个结果每个部

14、分的结合点,因此,这个选项通常适用于建成的部分与多种材料(并产生一个较大的结果文件) 。广义梁横断面当使用一般的非线性梁截面,无论是几何性质也不是明确指定的材料。广义应力表示的轴向力,弯矩,扭矩和横向剪切力。同样,广义应变暗示的轴向应变,弯曲曲率,扭转曲率和横向剪切应变。 (有关详细信息,请参阅一般非线性梁截面)这是用于表示横截面行为的抽象方法,因此,投入往往由实验数据或其他分析的结果。一般来说, BEAM189支持横向剪切力和横向剪切应变之间的弹性关系。您可以通过SECCONTROL命令覆盖的横向剪切刚度的默认值。当梁单元与一个广义光束( SECTYPE , GENB )截面类型相关联,横向

15、剪切力以横向剪切应变的关系可以是非线性弹性或塑料中,特别有用的,当柔性点焊是能力建模。在这样的情况下, SECCONTROL命令不适用。变截面梁横断面线性锥形束是通过指定在光束的截面的几何形状在全局坐标指定的每一端的标准库部分或使用网格,然后线性内插,并在该元件进行评估定义。在结束点的部分必须是拓扑一致的。 (有关详细信息,请参阅定义变截面梁。 )BEAM189负载力施加在节点(其还定义了元素x轴) 。如果形心轴是不共线的元素x轴,施加轴向力会引起弯曲。施加的剪切力将引起扭应变和力矩,如果横截面的形心和剪心是不同的。该节点,因此应设在哪里你想申请的力量点。使用SECOFFSET命令的OFFSE

16、TY和OFFSETZ参数适当。单元载荷在节点加载中描述。压力可以作为单元边界上的面载荷所表现出的圆圈数字上图189.1 : BEAM189几何。正正常压力作用的元素。横向压力输入每单位长度的力。结束“压力”是输入作为力量。在该元件的两端上,温度可以被输入在这些位置:在元素x轴(T (0,0) )在从x轴中的元素y方向(T (1,0) ) 1单元在从x轴中的元素z方向(T (0,1) ) 1单元BEAM189几何:是元素的位置(T ( Y,Z) )根据图189.1中使用的惯例给出。对于梁单元,单元体装载命令( BFE )接受的元素数量和值的列表, 1到6的温度德州仪器( 0,0 ) ,德州仪器(

17、 1,0 ) ,德州仪器( 0,1) , TJ ( 0 ,0) ,TJ (1,0),和TJ (0,1) 。这种输入可以用来指定温度梯度线性变化都在横截面和沿所述元件的长度。下面的默认值适用于元件温度输入:之后,如果第一所有温度指定,它们默认为第一个。这种模式适用于均匀的温度在整个元素。 (第一个坐标下,如果没有指定,默认为TUNIF 。 )如果所有三个温度在节点I输入,所有的温度在节点J的是不确定的,在节点J的温度默认为相应的节点I的温度。这种模式适用于温度梯度线性变化超过截面而是沿着元件的长度保持恒定。对于任何其它的输入方式,未指定的温度默认为TUNIF 。另外,在温度节点I和J可以用结点体

18、载荷( BF , NODE , TEMP , VAL1 )定义的。当使用一个节点的身体负荷定义一个温度,温度均匀涂敷于在指定的节点的横截面。 ( BF命令输入不被接受在节点K。 )您可以通过ISTRESS或ISFILE命令应用初始应力状态到此元素。欲了解更多信息,请参阅初始状态的基本分析指南中。压力载荷刚度的影响,会自动包含此元素。如果一个非对称矩阵是需要压力载荷刚度效应,使用NROPT , UNSYM 。BEAM189输入摘要节点I,J , K,L (定向节点L是可选的,但建议使用)自由度UX , UY , UZ , ROTX , ROTY , ROTZ如果KEYOPT ( 1 ) = 0U

19、X , UY , UZ , ROTX , ROTY , ROTZ , WARP如果KEYOPT ( 1 ) = 1部分中的控件TXZ , TXY , ADDMAS (见SECCONTROL )( TXZ与TXY默认为A * GXZ和A * GXY ,分别为,其中A =横截面积)材料特性TB命令:请参阅元素支持的材料模型,此元素。MP命令: EX , ( PRXY或NUXY ) , GXY , GXZ , ALPX , (或CTEX ,或THSX ) ,窝点, ALPD , BETD面载荷压力 - 面1 ( I- J)( -Z法线方向)面对2(I -J ) ( -Y法线方向)面3 (I- J)(

20、 + X切线方向)面4(I) (+ X轴方向)面5 (J) (-X轴方向)-I和J分别表示端节点。用于载入负值相反的方向。发出SFBEAM命令来指定表面负荷。分布式压力补偿不适用于脸部1 , 2 ,和3 。体载荷温度 - T( 0,0) ,T (1,0) T( 0,1)在每个末端节点特色出生和死亡(需要KEYOPT ( 11 ) = 1 )单元技术自动选择广义的横截面初始状态大挠度大应变线性扰动非线性稳定应力刚化KEYOPT ( 1 )翘曲自由度:0 - 六度每个节点自由,奔放的翘曲(默认)1 - 七度每个节点(包括翘曲)的自由。双力矩和bicurvature输出。KEYOPT ( 2 )断面

21、比例:0 - 断面调整为轴向拉伸(默认)的函数;仅适用于NLGEOM , ON已被调用1 - 部分被认为是刚性的(经典梁理论)KEYOPT ( 4 )剪切应力输出:0 - 只输出扭力相关的剪应力(默认)1 - 只输出弯曲相关的横向剪切应力2 - 输出先前的两种类型的结合状态。KEYOPT( 6) , KEYOPT( 7)和KEYOPT(9)仅在OUTPR , ESOL处于激活状态:KEYOPT ( 6 )输出控制部分力量/力矩和应变/曲率:0 - 输出部分力量/力矩和应变/曲率沿长度(默认)集成点1 - 同KEYOPT ( 6 ) = 0 ,加上当前部分地区2 - 同KEYOPT ( 6 )

22、= 1加元的基础方向(X, Y,Z )3 - 外推到元素节点输出部分力量/力矩和应变/曲率KEYOPT ( 7 )输出控制在截面的积分点(不可用时,部分亚型= ASEC) :0 - 无(默认)1 - 最大和最小应力/应变2 - 同KEYOPT ( 7 )= 1加应力和应变在每一节点KEYOPT ( 9 )输出控制外推到元素和部分节点的值(不可用时,部分亚型= ASEC) :0 - 无(默认)1 - 最大和最小应力/应变2 - 相同KEYOPT(9) = 1加应力和应变沿横截面的外边界3 - 同KEYOPT ( 9 ) = 1加应力和应变在所有节点上节KEYOPT ( 11 )设置部分属性:0

23、- 自动确定是否可以使用预先集成截面特性(缺省)1 - 使用部分的数值积分KEYOPT ( 12 )锥形段处理:0 - 线性锥形截面分析;截面特性在每个高斯点(默认值)进行评估。这是更准确的,但计算强度。1 - 平均横截面分析;带锥部分元素,截面特性仅在质心进行评估。这是目大小的顺序的近似,然而,它比较快。KEYOPT ( 15 )结果文件格式:0 - 在每一节角节点(默认)店铺平均结果。1 - 在每一部分的结合点存储非平均的结果。 (数据量可能会过度。此选项仅用于有多种材料建成的部分通常是很有用的。 )BEAM189输出数据与这些元素有关的结果输出有两种形式:节点位移和反应包括在整个节点解如

24、表189.1所述附加的单元输出: BEAM189单元输出定义要查看3 -D变形形状BEAM189 ,发出OUTRES , MISC或者OUTRES ,静态或瞬态分析ALL命令。要查看3 - D模式的形状为一个模式或特征值屈曲分析,必须扩大与元素的计算结果主动模式(通过MXPAND命令的Elcalc = YES选项) 。线性化应力习惯上在梁设计采用了向轴向负荷,并分别在各个方向弯曲的轴向应力的部件,因此, BEAM189提供了一种线性应力输出作为其SMISC输出结果的一部分,如下面的定义所示:SDIR是应力分量由于轴向载荷。SDIR = FX / A,其中fx是轴向负荷( SMISC数量1和14

25、) ,A为横截面的面积。SByT和SByB被弯曲应力分量。SByT = -MZ * YMAX /伊茨SByB = -MZ * YMIN /伊茨SBzT =我* ZMAX / IYYSBzB =我* ZMIN / IYY在那里我, Mz的是弯矩( SMISC数量2,15,3,16 ) 。坐标YMAX , YMIN , ZMAX和ZMIN是最大和最小Y,Z坐标中的质心测量的横截面。值IYY和伊茨是的截面惯性矩。除了ASEC类型的光束的横截面,该程序使用的最大和最小横截面尺寸。为ASEC型横截面的,在每个y和z方向上的最大值和最小值被假定为0.5到-0.5 ,分别。该组件株相应的定义是:EPELDI

26、R =前EPELBYT = -KZ * YMAXEPELBYB = -KZ * YMINEPELBZT =肯塔基* ZMAXEPELBZB =肯塔基* ZMIN其中前,肯塔基州和kz为广义应变和曲率( SMISC数量7,8,9 , 20,21和22) 。该报告强调严格只适用于成员的弹性行为。 BEAM189总是采用综合应力,以支持非线性材料的行为。当元素与非线性材料相关的组件应力可能充其量算是线性化近似,应谨慎解读。单元输出定义表使用如下标记:冒号( :)在名称列表示该项可以用分量名方法( ETABLE , ESOL )进行访问。 O列表示在Jobname.OUT文件的可用性。 R列表示在结果

27、文件的可用性。无论O列或R列, “Y”表示该项总是可用的,一个数字指的是描述当该项的条件表的脚注,而“ - ”表示该项不可用。表189.1 : BEAM189单元输出定义      名称定义ØEL单元号NODES单元连接太物料编号C.G. : X,Y ,Z重力的中心元素区域横截面的面积1SF : Y,Z部分剪力1SE : Y,Z部分剪切应变1S: XX , XY,XZ部分点讲2EPEL : XX , XY,XZ弹性应变2EPTO : XX , XY,XZ部分点机械应变计( EPEL + EPPL + EPCR )2EPTT

28、: XX , XY,XZ部分的总点数株( EPEL + EPPL + + EPCR EPTH )2EPPL : XX , XY,XZ部分点的塑性应变2EPCR : XX , XY,XZ部分点蠕变应变2EPTH : XX部分点热应变2NL : EPEQ累计等效塑性应变- 4NL : CREQ累计等效蠕变应变- 4NL : SRAT塑性屈服( 1 =主动屈服, 0 =不屈服)- 4NL : PLWK塑性功/卷- 4NL : EPEQ累计等效塑性应变- 4SEND :弹性,塑性,蠕变应变能量密度- 4天晴扭矩TE扭转应变KY,装置Kz曲率防爆轴向应变FX轴向力我, Mz的弯矩BM翘曲双力矩33BK翘

29、曲bicurvature33SDIR轴向正应力- 1SByT该元素+梁Y侧的弯曲应力- SByB上的光束的元件-Y侧的弯曲应力- SBzT该元素+梁Z侧的弯曲应力- SBzB上的光束的元件-Z侧的弯曲应力- EPELDIR轴向应变在年底- EPELByT的光束的元件+ Y侧上的弯曲应变。- EPELByB上的光束的元件-Y侧弯曲应变。- EPELBzT光束的元素+ Z侧上的弯曲应变。- EPELBzB上的光束的元件-Z侧弯曲应变。- 温度温度在所有部分角节点。- LOCI : X,Y ,Z集成点位置- 5SVAR :1 ,2,. ,N状态变量- 6 见KEYOPT ( 6 )说明见K

30、EYOPT ( 7 )和KEYOPT ( 9 )说明见KEYOPT ( 1 )的说明可如果元素具有非线性材料。仅当OUTRES , LOCI命令被使用。仅当USERMAT子程序和TB , STATE命令的使用。更多的输出是通过PRESOL和* GET , SECR在POST1命令描述。表189.2 :梁189项和序列号列出使用序列号方法通过ETABLE输出可用。请参阅本手册有关详细信息,创建一个元素表的基本分析指南中,而该项目和序列号表。表189.2 :梁189项和序列号使用如下标记:名称如表189.1中定义的输出量: BEAM189单元输出定义项目对于ETABLE预先确定的项目标签I,J在节

31、点序列号为数据I和J表189.2 :梁189项和序列号      输出量名称ETABLE和ESOL命令输入项目我FXSMISC114我的SMISC215MZSMISC316天晴SMISC417SFZSMISC518SFYSMISC619防爆SMISC720奇SMISC821KZSMISC922TESMISC1023经济特区SMISC1124赛克SMISC1225区域SMISC1326BMSMISC2729BKSMISC2830SDIRSMISC3136SByTSMISC3237SByBSMISC3338SBzTSMISC3439SBz

32、BSMISC3540EPELDIRSMISC4146EPELByTSMISC4247EPELByBSMISC4348EPELBzTSMISC4449EPELBzBSMISC4550温度SMISC51-5354-56S: XX , XY,XZLSCI为1 , DI 2 CJ 1 , DJ 2 EPEL : XX , XZ , XYLEPELCI为1 , DI 2 CJ 1 , DJ 2 EPTH : XXLEPTHAI 3, BI 4AJ 3 ,BJ 4EPPL : XX , XZ , XYLEPPLCI为1 , DI 2 CJ 1 , DJ 2 EPCR : XX , XZ , XYLEPCR

33、CI为1 , DI 2 CJ 1 , DJ 2 EPTO : XX , XY,XZLEPTOCI为1 , DI 2 CJ 1 , DJ 2 EPTT : XX , XY,XZLEPTTCI为1 , DI 2 CJ 1 , DJ 2  Ci和Cj是用于访问平均线元素的解决方案数量的序列号( LS , LEPEL , LEPPL , LEPCR , LEPTO和LEPTT )在RST段节点(节角节点,其中结果是可用的) ,在元素节点I和J分别。 Ci和Cj是只适用于当KEYOPT( 15 )= 0。对于给定的截面角节点nn时, Ci和Cj给出如下:CI = ( NN - 1 ) * 3

34、+ COMPCJ = ( nnMax + NN - 1 ) * 3 + COMP其中nnMax是RST节节点的总数量,并COMP是应力或应变组分(1 - XX , 2 - XY , 3 - XZ) 。 RST节节点的位置可以被可视化与SECPLOT , 6 。DI和DJ是用于访问非平均线元素的解决方案数量的序列号( LS , LEPEL , LEPPL , LEPCR , LEPTO和LEPTT )在RST截面的积分点(截面的积分点,其中结果是可用的) ,分别为元素节点I和J的DI和DJ仅适用于当KEYOPT( 15 )= 1 。为第i个结合点(I = 1,2, 3,或4 )在第细胞NC, D

35、I和DJ给出如下:DI = ( NC - 1 ) * 12 + ( I - 1 ) * 3 + COMPDJ = ( ncMax + NC - 1 ) * 12 + ( I - 1 ) * 3 + COMP其中ncMax是RST节细胞的总数,和COMP是应力或应变组分(1 - XX , 2 - XY , 3 - XZ) 。 RST节细胞的位置,可以可视化与SECPLOT , , 7 。Ai和Aj分别用于访问平均线元件热应力数量LEPTH在RST段节点(节角节点,其中结果是可用的) ,在元素节点I和J的序列号。 Ai和Aj是只适用于当KEYOPT( 15 )= 0 。对于给定的截面角节点nn时,

36、 Ai和Aj给出如下:AI = NNAJ = nnMax + NN其中nnMax是RST节节点的总数。 RST节节点的位置可以被可视化与SECPLOT , 6 。BI和BJ是用于访问非平均线元件热应力数量LEPTH在RST截面的积分点(截面的积分点,其中结果是可用的) ,分别为元素节点I和J的序列号。 BI和BJ适用,只有当KEYOPT ( 15 )= 1 。为第i个结合点(I = 1,2, 3,或4 )在第细胞NC, BI和BJ给出如下:BI = ( NC - 1 ) * 4 + IBJ = ( ncMax + NC - 1 ) * 4 + I其中ncMax是RST节细胞的总数。 RST节细

37、胞的位置,可以可视化与SECPLOT , , 7 。欲了解更多使用详情,请参阅打印和查看科成绩和悬臂梁例题。横向剪应力输出该BEAM189配方是基于三个应力分量:一个轴向2剪切应力的剪切应力被扭转和横向负荷引起的。 BEAM189是基于一阶剪切变形理论,也俗称为Timoshenko梁理论。横向剪切应变是恒定的横截面,因此,剪切的能量是基于横向剪切力。剪切力是通过在光束截面预定的剪切应力分布系数重新分配,并可供输出的目的。默认情况下,该程序只输出所造成的扭转载荷的剪切应力。使用KEYOPT(4 ),以激活所引起的弯曲或横向载荷的剪切应力的输出。横向切变分布的精度成正比的横截面造型(测定翘曲,剪切

38、中心和其它部分的几何属性)的网格密度。在横截面的边缘牵引自由状态是满足仅在横截面的一个良好的精制模型。默认情况下,程序使用一个网格密度(为横截面模型),提供准确的结果扭转刚度,翘曲刚度,惯性特性和剪切中心的决心。采用默认的网格也适用于非线性材料的计算,但是,更精致的横截面模型可能是必要的,如果剪应力分布,由于横向载荷必须非常准确地捕捉到。增大横截面网格尺寸并不意味着较大的计算量,如果横截面是均匀的和相关的材料是线性的。使用SECTYPE和SECDATA命令来调整横截面的网格密度。横向剪切分布计算忽略了泊松比的影响。泊松比影响剪切修正系数和剪切应力的分布程度,并且这种影响将被忽略。BEAM189

39、假定和限制梁不能有长度为零。在默认情况下( KEYOPT(1) = 0) ,翘曲抑制的效果被认为是微不足道的。横截面故障或折叠不占。正在转动自由度不包括在集中质量矩阵,如果节点位置偏移都存在。该元件允许弯曲成员定义和线性弯曲力矩的变化。但是,如果一个立方为代表的横向位移是必要的,成员最初直, ANSYS公司推荐使用BEAM188与立方选项( KEYOPT ( 3 ) = 3 ) 。该元件包括横向剪切的影响,并占束的初始曲率。元素效果最好的全牛顿 - 拉夫逊解决方案计划(也就是默认选择的解决方案控制)。 BEAM189 3 -D三节点梁:MP ME ST PR PRN DS

40、DSS < > < > < > < > PP EME MFS产品限制BEAM189元素说明该BEAM189单元适合于分析细长到中等粗短/厚梁结构。该元素是基于Timoshenko梁理论,其中包括剪切变形效果。该元件提供无节制的翘曲和横截面的受限制翘曲的选项。该元素是在3 -D的二次三节点梁单元。用默认设置,六个自由度的发生在每一个节点,这些包括在x, y和z方向和旋转围绕x , y和z方向的平移。一个可选的第七个自由度(横截面的翘曲)是可用的。该元件是非常适合于线性,大旋转,和/或大应变非线性应用。该元件的应力刚,默认情况下,在与NLGEOM ,

41、ON任何分析。所提供的应力刚度使本单元能分析弯曲,横向及扭转稳定问题(用特征值屈曲或折叠的研究与弧长方法或非线性稳定) 。弹性,塑性,蠕变等非线性材料模型的支持。与此元素类型相关联的横截面可以是内置了部分引用一个以上的材料。图189.1 : BEAM189几何  BEAM189单元技术和使用建议BEAM189是基于Timoshenko梁理论,这是一个一阶剪切变形理论:横向剪切应变是通过横截面恒定的,也就是说,横截面保持平面和变形后的失真。该元件可用于纤细或粗壮的横梁。由于一阶剪切变形理论的局限,细长到中等厚度的光束可以被分析。使用一个梁结构( GAL2 / (EI) )的长

42、细比,判断该元素的适用性,其中:剪切模量一的横截面的面积L该成员的长度(而不是元素的长度)EI抗弯刚度使用一些全局距离的措施,而不是在单个元素的尺寸立足它计算出的比率。下图显示了悬臂梁受小费荷载横向剪切变形的估计。虽然结果不能外推到其他应用程序中,例如可以很好地充当一般准则。一个长细比大于30的建议。图189.2 :横向,剪切变形预测      长细比( GAL2 / ( EI ) )季莫申科 / 欧拉 - 伯努利251.120501.0601001.03010001.003这些元素都支持横向剪切力和横向剪切应变之间的弹性关系。您可以

43、使用SECCONTROL命令覆盖的横向剪切刚度的默认值。BEAM189不使用高阶的理论来解释变化的剪切应力的分布。使用固体元素,如果这种影响必须加以考虑。BEAM189支持“内敛翘曲”分析,通过提供在每个梁节点第七自由度。默认情况下, BEAM189单元假定一个横截面的翘曲是足够小,它可能被忽略( KEYOPT(1) = 0)。您可以通过使用KEYOPT ( 1 ) = 1激活自由的翘曲程度。随着自由激活的翘曲度,每个节点有七个自由度: UX , UY , UZ , ROTX , ROTZ , ROTY和翘曲。用KEYOPT(1) = 1,双力矩和bicurvature输出。不像其他的立方(埃

44、尔米特)基于多项式的元素, BEAM189是基于二次多项式,因此,在规范的分布式压力负荷的偏移量是不allowed.BEAM189具有线性弯曲力矩的变化。网格的细化建议,以适应这种负荷。 BEAM189是计算效率高,并具有超收敛性质对于网格细化。例如,二次光束具有2点高斯积分是已知的相同的精度为埃尔米特元件。在实践中,当两个元素“抑制翘曲”走到一起成锐角,则需要夫妇的位移和旋转,但离开了面外翘曲脱钩。这通常是由具有两个节点的物理位置和使用的适当的约束实现的。这个过程是由ENDRELEASE命令,该命令解耦平面翘曲的出用于与横截面相交的角度大于20度的任意的相邻的元件变得更容易(或自动) 。BE

45、AM189允许改变在截面惯性属性轴向伸长的功能。默认情况下,该横截面面积的变化,使得该元件的体积变形后得以保留。默认值是适用于弹塑性应用。通过使用KEYOPT ( 2 ) ,您可以选择保留的横截面不变或刚性。缩放不是一般的非线性梁截面( SECTYPE , GENB )的选项。为一致的负载向量,比用于刚度矩阵采用较高阶积分规则质量矩阵和评价。这些元素同时支持一致和集中质量矩阵。避免使用LUMPM , ON作为BEAM189是一个高阶的元素。一致质量矩阵默认情况下使用。每单位长度的附加质量可以是输入与ADDMAS部分控制。请参见“ BEAM189输入汇总” 。为扭转行为圣维南翘曲函数在未变形状态

46、决定的,是用来甚至屈服后确定剪切应变。没有选项可用于在变形的构造重新计算分析和可能的局部塑性屈服的横截面中的横截面的扭转剪切配送。因此,大的非弹性变形,由于扭转载荷应及时治疗,并证实慎用。在这种情况下,使用固体或壳单元另类造型建议。BEAM189输入数据几何形状,节点位置,坐标系和压力指示此元素如图189.1 : BEAM189几何。 BEAM189是由节点I,J和K在全局坐标系中定义的。节点L是一个优选的方式来定义的元素的定向。有关定位节点和梁划分网格的信息,请参阅生成梁网凭借在建模和分网指南取向的节点。此外,请参阅二次单元(中间节点)在同一手册,对用中间节点的。见LMESH和LATT命令描

47、述的自动生成节点的详细信息。对于低阶光束的描述,请参阅BEAM188 。该元素也可以不朝向节点L。在这种情况下所定义,该元素x轴是从节点I(结束1)朝向节点J的(结束2)定向。当无取向节点时,该元素y轴的默认方向是自动计算的,以平行于全球XY平面。对于其中元件是平行于总体Z轴(或它的0.01 的坡度范围内)的情况下,该元素y轴方向平行于全局Y轴(如图所示) 。对于单元方向有关元素的x轴的用户控件,使用L节点选项。如果两个都定义,定向节点选项优先。方向节点L,如果使用的话,定义包含元素x和z -轴(如图所示)的平面(与I和J) 。如果在一个大的偏转分析使用该元件,应注意的取向节点的L的位置仅用于

48、初始定向元件。的自由度的数目取决于KEYOPT的值(1) 。当KEYOPT ( 1 )= 0 (默认) ,六个自由度发生在每一个节点。这些包括在x, y和z方向和旋转围绕x , y和z方向的平移。当KEYOPT ( 1 )= 1 ,自由度(横截面的翘曲)的第七度也被认为是。该元件是在空间中的一维的线元素。经由SECTYPE和SECDATA命令分开设置的横截面细节。 (见梁分析和横截面的结构分析指南中的说明。 ) A节与梁单元通过指定截面号( SECNUM )相关联。 A节数是一个独立的属性。除了恒定的横截面,你也可以通过使用锥选项上SECTYPE命令定义一个锥形截面。 (有关详细信息,请参阅定

49、义变截面梁。 )BEAM189忽略了与6.0版以后的任何真正的常量数据。用于限定所述横向剪切刚度看到SECCONTROL命令,附加质量。单元输入摘要如下在“ BEAM189输入汇总” 。BEAM189横断面BEAM189可以与这些横截面类型相关联:它定义梁截面( SECTYPE , BEAM )的几何结构标准库部分类型或用户的网格。梁的材料被定义成元素的属性(MAT ),或作为第积累部分(用于多材料的横截面) 。广义束横截面( SECTYPE , GENB ),其中广义应力广义应变的关系是直接输入。锥形束横截面( SECTYPE ,锥),其中一个标准库部分或用户定义网格梁的两端。标准库章节BE

50、AM189是在使用SECTYPE和SECDATA若干节点数自动地设置有部分相关的量(面积整合,位置等)。每个部分被假定为九个节点的单元的预定数量的组件。各横截面单元具有四个积分点和每一个都可以与一个独立的材料类型相关联。图189.3 :横截面细胞  细胞在横截面的数目影响的部分特性和非线性应力 - 应变关系通过截面建模能力的准确性。该元件具有集成的嵌套结构(沿长度和横截面) 。当与元素相关联的材料具有弹性的行为或当温度在整个截面的变化,构计算在截面的积分点进行。对于更常见的弹性应用,该元素使用的部分在单元积分点的预先计算的性能。然而,应力和应变计算在输出通在部分节点。如果该

51、部分被分配子形状ASEC ,只有广义应力和应变(轴向力,弯矩,横剪,曲率,以及剪切应变)可用于输出。 3 -D等高线图和变形形状都没有。该ASEC亚型显示只是一道薄薄的长方形来验证梁的方向。 BEAM189对待ASEC如只用一个横截面的积分点部分类型。BEAM189是用于分析组合梁有帮助的, (即,那些制成的两片或多片材料连接在一起形成一个单一的,实心光束) 。件被认为是完全粘结在一起,因此,光束表现为一个单一的部件。多材料截面能力仅适用于其中一个光束行为的假设(季莫申科或伯努利 - 欧拉梁理论)成立。换句话说,支持哪些是现有的Timoshenko梁理论的简单扩展。它可能的应用,如用于:双金属

52、片梁用金属加固传感器,其中不同的材料层已沉积BEAM189不考虑弯曲和扭转的截面刚度水平的耦合。横向剪也视为非耦合方式。这可能对层状复合材料和夹层梁一个显著的效果,如果上篮是不平衡的。总是验证BEAM189的应用,无论是与实验或其他数值分析。由于核实后使用带建成部分的内敛翘曲选项。KEYOPT ( 15 )指定。 RST结果文件的格式。对于KEYOPT( 15 )= 0 ,该格式只提供一个在每个区段拐角节点平均的结果,因此,此选项通常适用于同质部分。对于KEYOPT ( 15 ) = 1 ,格式给出一个结果每个部分的结合点,因此,这个选项通常适用于建成的部分与多种材料(并产生一个较大的结果文件

53、) 。广义梁横断面当使用一般的非线性梁截面,无论是几何性质也不是明确指定的材料。广义应力表示的轴向力,弯矩,扭矩和横向剪切力。同样,广义应变暗示的轴向应变,弯曲曲率,扭转曲率和横向剪切应变。 (有关详细信息,请参阅一般非线性梁截面)这是用于表示横截面行为的抽象方法,因此,投入往往由实验数据或其他分析的结果。一般来说, BEAM189支持横向剪切力和横向剪切应变之间的弹性关系。您可以通过SECCONTROL命令覆盖的横向剪切刚度的默认值。当梁单元与一个广义光束( SECTYPE , GENB )截面类型相关联,横向剪切力以横向剪切应变的关系可以是非线性弹性或塑料中,特别有用的,当柔性点焊是能力建

54、模。在这样的情况下, SECCONTROL命令不适用。变截面梁横断面线性锥形束是通过指定在光束的截面的几何形状在全局坐标指定的每一端的标准库部分或使用网格,然后线性内插,并在该元件进行评估定义。在结束点的部分必须是拓扑一致的。 (有关详细信息,请参阅定义变截面梁。 )BEAM189负载力施加在节点(其还定义了元素x轴) 。如果形心轴是不共线的元素x轴,施加轴向力会引起弯曲。施加的剪切力将引起扭应变和力矩,如果横截面的形心和剪心是不同的。该节点,因此应设在哪里你想申请的力量点。使用SECOFFSET命令的OFFSETY和OFFSETZ参数适当。单元载荷在节点加载中描述。压力可以作为单元边界上的面

55、载荷所表现出的圆圈数字上图189.1 : BEAM189几何。正正常压力作用的元素。横向压力输入每单位长度的力。结束“压力”是输入作为力量。在该元件的两端上,温度可以被输入在这些位置:在元素x轴(T (0,0) )在从x轴中的元素y方向(T (1,0) ) 1单元在从x轴中的元素z方向(T (0,1) ) 1单元BEAM189几何:是元素的位置(T ( Y,Z) )根据图189.1中使用的惯例给出。对于梁单元,单元体装载命令( BFE )接受的元素数量和值的列表, 1到6的温度德州仪器( 0,0 ) ,德州仪器( 1,0 ) ,德州仪器( 0,1) , TJ ( 0 ,0) ,TJ (1,0),和TJ (0,1) 。这种输入可以用来指定温度梯度线性变化都在横截面和沿所述元件的长度。下面的默认值适用于元件温度输入:之后,如果第一所有温度指定,它们默认为第一个。这种模式适用于均匀的温度在整个元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论