版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、“猜想”出一片精彩运用“猜想验证”探究学习策略学习商不变性质乌龙泉矿学校 夏金强一、问题提出随着新课改的不断深入,“新课堂”确实出现了无限生机。由于教学工作的关系,在经常听课的过程中,我发现了其中的一些问题,老教师更多的还进行着传授式的教学,师问生答的封闭式教学模式仍然根深蒂固。在这种模式里学习的学生基础知识与技能掌握的比较扎实,但学生主动提问、探求创造的意识明显不足,尤其到了高年级的学生,课堂上不愿主动举手,不愿合作交流,更危险的是学生丧失了探究的能力。针对这种弊端,我们老师应该及时更新自己的教学理念,用新理念实践我们的教材,让他们也能充满学习的活力,充满探究的欲望,充满大胆猜想小心验证的勇
2、气和精神。在自己的教学实践中,我构建了“猜想验证”探究学习策略教学模式,着重来培养学生提出问题、解决问题的能力。两年来,我认真研究了省编教材,梳理出部分适合使用这种学习策略的内容,并积极实践。以下就是我运用“猜想验证”探究学习策略教学商不变性质的案例和反思:二、案例描述(一)、创设情景提出猜想1、创设情景师:四(2)的老师请班长为同学们分本子,要求班长做到公平,先来了两位同学,老师拿了6本本子分给这两位同学。后来,又来了4位同学,老师对班长说“你动动脑筋,看着办吧!”只见班长拿了12本本子分给这4位同学,老师和同学们会心地笑了。最后,又来了12位同学,你们替班长动动脑筋,一共要拿几本本子分才公
3、平呢?师:你能用算式来表示这个分本子的过程吗?生列式出:62=3 124=3 3612=3师:你发现这些除法算式有什么特点?生1:它们的商都是3。生2:但被除数和商都变了2、提出猜想师:在除法运算中,凭你的经验,被除数和除数都变化时,你们认为商会怎样?生1:商可能会变,也可能不会变生2:商有可能变小,也有可能变大。师:今天这节课我们先来研究要使商不变,被除数和除数可能会怎么变化呢,同学们可以根据自己的经验,在小组内轻声讨论一下,再提出一个猜想问题。同组学生在队长的带领下,组织讨论,分别列出了几个猜想问题。猜想1(第3、5组):要使商不变,我们认为被除数和除数可能是增加一个数,这是从刚才分本子的
4、时候想到的。猜想2(第1、4组):要使商不变,我们认为被除数和除数也有可能是减少一个数。猜想3(第6组):要使商不变,我们认为被除数和除数是扩大几倍。猜想4(第8组):要使商不变,被除数和除数也有可能是缩小几倍,这也可以从分本子的算式里,从后向前看,有这样的变化。猜想5(第7组):我们组也是,只是认为被除数和除数扩大或缩小一个相同的数,商才不变。(二)协同验证发现规律师:同学们凭自己的经验和直觉提出了5个猜想问题,是不是都对呢?我们还没有经过验证,所以也就不好肯定哪个猜想是成立的。下面,你们根据自己的兴趣和能力选择1个或几个猜想问题,先每个同学独立举例验证,然后同学们充分发挥小组的力量,互相启
5、发,互相辩说。等老师布置好小组合作的任务和注意事项后,每个小组在队长的带领下,投入了合作探究过程中,下面是通过摄像机聚焦合作学习过程的实录情景一:验证猜想1的小组(要使商不变,被除数和除数可能是增加一个数)在每个学生举例验证后,队长组织同伴交流自己的发现,并互相辩说:生1:我认为有可能,你看,3612=3,而(36+0)(12+0)=3生2:(大家哈哈笑)这不是等于没有增加吗,竹篮子打水一场空。生3:可以的,你看,2121=1,而(21+4)(21+4)=1生4:这只是一个特殊的例子,从我举得一些例子来看,好像不行,你看,408=5,而(40+2)(8+2)=42生5:你们增加的都是一个相同的
6、数,我这个例子不一样,246=4,而(24+4)(6+1)=4,生1:哎,怎么这么怪,我认为这个猜想对一半,我们不是加了“可能”吗?生2:队长,今天你怎么一句话也不说呀。生6:不是,我在想,老师以前说过,如果用举例来验证数学问题,我们只要举出一个反例就可以证明这句话是不对的。生2:所以我认为,这个猜想只要这样改就对了,相同的被除数和除数增加相同的数,商是不变的,而且永远是1。生4:如果被除数和除数不同,增加一个相同的数,零除外,商肯定会变。生5:根据我的举例,我发现,被除数和除数如果增加的不是一个相同的数,商会有两种情况,可能会变,也可能不会变。生6:你们的发现我都赞成,等一会汇报的时候,让生
7、2、生5一起汇报,我们补充,怎么样?情景二:验证猜想3的小组(要使商不变,被除数和除数要扩大几倍。)生1:(这位学生很兴奋,可能是对自己的发现很有把握)我先说吧,我认为这个猜想是对的,从分本子的算式可以得到验证,124=3,而(123)(43)=3生2:我不赞同,你扩大的都是3倍,如果不是一样的话,就不一定了生3:是这样的,你们看,182=9,而(184)(22)=18,结果变了。生3:我认为也是不全对,如果不是扩大一个相同的数,就不能保证商不变。生4:我赞同你的看法,只要是扩大一个相同的数,商才不会变。生5:那也不一定生2:那你举出一个反例看。生5:我只是凭感觉。生1:证明对错不能“跟着感觉
8、走”生6:(很激动)我想到了,如果同时乘一个0,任何数乘0结果都为0,难道还能说商不变吗(大家对生6的发现投去了佩服的眼光,片刻后,又分成了两派)生4:这里又不是乘,而是扩大,扩大0倍,不算的。生5:老师说过的,扩大就是乘的意思,可以的。(生5拉出老师的话给自己撑腰,其他反对的同学也一下子找不出理由了,可是过了一会儿)生3:我认为还有问题,你看,202=10,而(182)(22)=20生6:你这里是除了,一个扩大,一个缩小,不行。生3:所以像刚才那样说还是不对的,我认为应该再加上同时扩大。生2:厉害。生5:经过大家的讨论,我们的猜想不完全对,应该这样说,要使商不变,被除数和除数应该同时扩大一个
9、相同的数。生2:“0”还要除外。大家一起喊着:“0”要除外,哈哈!(三)全班交流共同评介(略)(四)巩固拓展课外延伸(略)三、实践反思说起“猜想”,我们也就会联想到著名的“歌德巴赫猜想”。虽然学生的学习过程,并非要出现像“歌德巴赫猜想”那样的著名推断,但应具有知识的“再发现”和“再创造”过程。我们的教学要注重引导学生进行积极的猜想和验证,这不仅仅是学生进行知识再发现和再创造的良好开端,更是学生主动发现问题、解决问题的有效方式。1、“猜想验证”探究学习策略是学生主动发现问题、解决问题的有效方式。在课堂内,哪些内容更适合于学生运用该策略学习呢?实践告诉我们,学习任务的难度比较高,一般需要较多人的努
10、力才能完成的内容更适合于学生运用“猜想-验证”探究学习策略,这有利于学生提问能力和探究能力的培养。像“商不变性质”的内容,具有很大的探究空间,而且难度较高,研究范围比较宽泛,仅仅以个人的力量去发现商不变性质的规律,会显的力不从心,而且不管是深度还是广度都会受到限制。而采用猜想-验证探究学习策略后,老师通过创设一个充满挑战和童趣的问题情景,让学生主动发现问题,并提出若个个猜想问题,通过协同验证,互相辩说,发现规律,这样集个人智慧和小组力量为一体,共享小组智慧资源;然后通过全班交流、争辩、启发,进一步完善认知,把“商不变性质”鲜活的烙印在脑海里;最后让学生对研究的内容再提出新的问题,通过课外延伸,
11、以小课题研究的形式,拓展“商不变性质”的外延,同时也提高学生提问、解决问题的能力,体验研究的乐趣。实践证明,只要定准内容,“猜想-验证”探究学习策略是学生主动发现问题、解决问题的有效方式。在这个学习过程中,学生有了更大的自由思维空间,学生可以根据自己的个性思维提出猜想问题,可以根据自己的学习能力验证、推理、操作,小组成员又可以协同帮忙,全班同学又可以共享智慧资源,达到资源互补的实效。2、“猜想-验证”探究学习让学生经历思维活动的“三步曲”。从心理学角度看,“猜想”是一项思维活动,是学生有方向的猜测和判断,包含了理性的思考和直觉的判断;从学生的学习过程来看,猜想应是学生有效学习的良好准备,它包含
12、了学生从事新的学习或实践的知识准备、积极动机和良好情感。通过教学实践我们发现:运用“猜想-验证”探究学习策略,学生要经历思维活动的“三步曲”:(1)提问猜想的开始。让每个学生在已有的知识经验、能力水平和学习方法的基础上提出问题,并进行积极的猜想,这有助于提高学生的学习兴趣,活跃思维,促进智力的发展与提高。比如这节课的开始,我首先让学生观察除法算式,然后问:“在除法运算中,凭你的经验,被除数和除数都变化时,你们认为商会怎样?”于是,学生就开始积极思考,提出了自己初步的猜想,有的认为商可能会变,也可能不会变,有的认为商有可能变小,也有可能变大。但此时的猜想是很表面的,更多的是凭直觉。(2)假设猜想
13、的深入。问题提出后,学生经过反复思考、联想、顿悟,结合已有的知识和生活经验提出自己的假设。假设,从思维角度讲,就是一种猜想。这样的思维过程,是充分发挥学生创新能力和主体意识的过程。这节课,在学生提出初步猜想后,老师及时引导:“今天这节课我们先来研究要使商不变,被除数和除数可能会怎么变化呢,同学们可以根据自己的经验,在小组内轻声讨论一下,再提出一个猜想问题”,把学生引向猜想的深处,同组学生在队长的带领下,组织讨论,提出了5个猜想问题。(3)实践猜想的验证。只有猜想没有验证,那只能是空想。把猜想与探索实践紧密结合,可以产生猜想的良性循环。不同的学生会有不同的猜想,但都是学生的主动思维的过程,都包含
14、着创新因素。学生提出5种猜想后,我紧接着问:“同学们提出了5个猜想问题,是不是都对呢?我们还没有经过验证,所以也就不好肯定哪个猜想是成立的。下面,你们根据自己的兴趣和能力选择1个或几个猜想问题,先每个同学独立举例验证,然后同学们充分发挥小组的力量,互相启发,互相辩说,来说明自己的猜想是否成立。”学生很有兴趣的投入了协同验证的探究学习过程。3、“猜想-验证”探究学习策略还有利于学生暴露思维问题。学生猜想后,需要验证。而验证涉及到多种思维方式,如反向思维、发散思维、甚至创造思维。在这过程中,学生会暴露出很多问题,其中很多问题其他同学是很难预见的,但因为通过小组互相启发、互相辩说的环节,难于预见的问题发现了,也得到了比较理想的解决,这样也有利于老师从容应付,生成智慧。当然,小组还不能解决的问题,再拿到全班争辩,这样的问题就更有研究的价值,可以成为最佳的生成资源。例如,(见情景一、二)刚开始学生对自己的猜想问题认识并不是很深,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 结核病基本知识健康教育
- 苏州科技大学天平学院《原理及工程应用道桥》2023-2024学年第一学期期末试卷
- 苏州科技大学天平学院《设计基础三》2021-2022学年第一学期期末试卷
- 言语治疗技术
- 公共设施管理的社区参与和社会责任实施经验分享考核试卷
- 医药制造业的专利保护与产权管理考核试卷
- 2024公路工程(合同段)竣工验收证书
- 建筑工地中的防护措施考核试卷
- 智能家居智能健身消费设备考核试卷
- 压铸机应用安全及维修考核试卷
- GB 20052-2024电力变压器能效限定值及能效等级
- 陶行知与乡村教育智慧树知到期末考试答案章节答案2024年丽水学院
- 手术切口感染PDCA案例
- 依托国家中小学智慧教育平台开展有效教学的研究课题申报评审书
- 小学大思政课实施方案设计
- 供应室消防应急预案演练
- 校运会裁判员培训
- 潮湿相关性皮炎的护理
- 脊髓损伤课件
- 关于生殖健康知识讲座
- 洪恩识字配套字库完整版识字启蒙200字-生字组词句子完整版可打印-点读指读
评论
0/150
提交评论