版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 相似三角形的判定方法:相似三角形的判定方法: 对应角相等,对应角相等, 对应边成比例对应边成比例 相似三角形还有哪些性质?相似三角形还有哪些性质?2. 相似三角形的性质:相似三角形的性质:课前小练习:课前小练习:如图如图,P是是AB上一点上一点,补充下列条件补充下列条件: (1) ACP=B; (2)APC=ACB;其中一定能使其中一定能使 ACP ABC的是的是( ) (A) (1) (2) (3) (4) (B) (1) (2) (3) (C) (3) (D) (1) (2) (4) ;3BCPCACAP .4ABACACAPABCPD高高角平分线角平分线中线中线思思考考?ABCAB
2、CDD探究探究1-高线高线 如图,如图,ABCABC,相似比为,相似比为k,它们对,它们对应高、对应中线、对应角平分线的比各是多少?应高、对应中线、对应角平分线的比各是多少?如图,分别作如图,分别作ABC和和ABC的对应高的对应高AD和和ADBBkBAABDAAD 则则ADB =ADB.ABCABCABDABD相似三角形对应高的比等于相似比相似三角形对应高的比等于相似比. . 如图,如图,ABCABC,相似比为,相似比为k,它们对,它们对应高、对应中线、对应角平分线的比各是多少?应高、对应中线、对应角平分线的比各是多少?探究探究1-中线中线ABCEABCE如图,分别作如图,分别作ABC和和 A
3、BC的对应中线的对应中线AE和和AE, kEAAE 猜猜想想你能类比前你能类比前面的方法证面的方法证明吗?明吗?相似三角形对应中线的比等于相似比相似三角形对应中线的比等于相似比. . 如图,如图,ABCABC,相似比为,相似比为k,它们对,它们对应高、对应中线、对应角平分线的比各是多少?应高、对应中线、对应角平分线的比各是多少?探究探究1-角平分线角平分线ABCFABCF如图,分别作如图,分别作ABC和和 ABC的对应角平分线的对应角平分线AF和和AFkFAAF 猜猜想想你能类比前你能类比前面的方法证面的方法证明吗?明吗?相似三角形对应角平分线的比等于相似比相似三角形对应角平分线的比等于相似比
4、. .ABCABC相似三角形相似三角形的周长有什的周长有什么关系?么关系?相似三角形相似三角形对应线段对应线段的比等于相似比的比等于相似比. .相似三角形相似三角形对应高对应高的比,的比,对应中线对应中线的比,的比,对应角平分线对应角平分线的比都等于相似比的比都等于相似比. .知识要点知识要点kCCCBAABC 猜想猜想探究探究2-周长周长 如图,如图,ABCABC ,相似比为,相似比为k, 求它们周长的比求它们周长的比.ABCABC相似三角形周长的比等于相似比相似三角形周长的比等于相似比. .kACCACBBCBAAB , , ACkCACBkBCBAkAB kACCBBAAkCCkBBkA
5、ACCBBACABAABllCBAABC ABCABC如图,如图,ABCA1B1C1,相似比为,相似比为k,它们面,它们面积的比与相似比有什么关系?积的比与相似比有什么关系?探究探究3-面积面积?1111BCADkBCADA1B1C1ABC相似三角形面积的比等于相似比的平方相似三角形面积的比等于相似比的平方.DD1SABCSA1B1C1=12BC AD111112BCAD=kk= k21111DAADCBBC 如图,分别作如图,分别作ABC和和 A1B1C1的的对应高对应高AD和和A1D1 通过前面的思考、探索、推理,我们得到通过前面的思考、探索、推理,我们得到相似三角形有如下性质;相似三角形
6、有如下性质; 相似三角形对应高的比、对应中线的比、相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比等于相似比。对应角平分线的比、周长的比等于相似比。相似三角形面积的比等于相似比的平方。相似三角形面积的比等于相似比的平方。1.判断判断(1)一个三角形的各边长扩大为原来的)一个三角形的各边长扩大为原来的5倍,这个倍,这个三角形的周长也扩大为原来的三角形的周长也扩大为原来的5倍;(倍;( )(2)一个四边形的各边长扩大为原来的)一个四边形的各边长扩大为原来的9倍,这个倍,这个四边形的面积也扩大为原来的四边形的面积也扩大为原来的9倍(倍( )(1)一个三角形各边扩大为原来)一个三角形各边
7、扩大为原来5倍,相似比为倍,相似比为1:51 55原周长扩大 倍周长扩大扩大5倍周长倍周长5倍原周长倍原周长解:解:一个三角形各边扩大为原来一个三角形各边扩大为原来9倍,相似比为倍,相似比为1:92199SS原四边形扩大 倍四边形边长扩大边长扩大9倍四边形倍四边形81倍原四边形的的面积倍原四边形的的面积(2)一个四边形的各边长扩大为原来的)一个四边形的各边长扩大为原来的9倍,这个四边倍,这个四边形的面积也扩大为原来的形的面积也扩大为原来的9倍倍例例.如图,在如图,在ABC和和DEF中,中,AB2DE,AC2DF,AD,若,若ABC的边的边BC上的高为上的高为6,面积为,面积为 ,求求DEF的边
8、的边EF上的高和面积上的高和面积解:在解:在ABC和和DEF中,中, AB2DE,AC2DF21 ACDFABDE又又 DA DEFABC,相似比为,相似比为21ABCDEF512ABC的边的边BC上的高为上的高为6,面积为,面积为512DEF的边的边EF上的高为上的高为 ,面积为面积为53512212 )(3621 1. 1.已知已知ABCABC与与AAB BC C的相似比为的相似比为2 2:3 3,则对,则对 应边上中线之比应边上中线之比 ,面积之比为,面积之比为 。 2. 2. 如果两个相似三角形的面积之比为如果两个相似三角形的面积之比为1:91:9, 周长的比为周长的比为_ _ 。 1
9、:32:34:93、已知、已知ABCA B C ,AD、A D 分别分别是对应边是对应边BC、B C 上的高,若上的高,若BC8cm,B C 6cm,AD4cm,则则A D 等于(等于( )A 16cm B 12 cm C 3 cm D 6 cm 4、两个相似三角形对应高的比为、两个相似三角形对应高的比为3 7,它们的,它们的对应角平分线的比为(对应角平分线的比为( )A 7 3 B 49 9 C 9 49 D 3 7CD31516181BAEDCFB6、如图,、如图,ABC是一块锐角三角形余料,边是一块锐角三角形余料,边BC=120毫米,高毫米,高AD=80毫米,要把它加工成正方形毫米,要把
10、它加工成正方形零件,使正方形的一边在零件,使正方形的一边在BC上,其余两个顶点分别上,其余两个顶点分别在在AB、AC上,这个正方形零件的边长是多少?上,这个正方形零件的边长是多少?NMQPEDCBA解:解:设正方形设正方形PQMN是符合要求的是符合要求的ABC的高的高AD与与PN相交于点相交于点E。设正方形。设正方形PQMN的边长为的边长为x毫米。毫米。因为因为PNBC,所以,所以APN ABC所以所以AEAD=PNBC因此因此 ,得,得 x=48(毫米)。答:(毫米)。答:-。80 x80=x120 7、已知梯形已知梯形ABCD中,中, ADBCBC,对角线,对角线ACAC、BDBD交于点交于点O O,若若AODAOD的面积为的面积为4cm4cm2 2, , BOCBOC的面积为的面积为9cm9cm2 2, , 则梯形则梯形ABCDABCD的面积为的面积为_cm_cm2 2ABCDO解解:AODAODCOB SCOB SAOD:SAOD:SCOB=4:9COB=4:9OD:OB=2:3OD:OB=2:3SSAOD:SAOD:SAOB=2:3AOB=2:3SSAOB=6cmAOB=6cm2 2梯形的面积为梯形的面积为25cm25cm2 2ADBCADBC25 1 1、相似三角形的性质、相似三角形的性质相似三角形的对应角相等相似三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度网络安全应急响应托管服务合同2篇
- 二零二五年度绿色建筑评价标识工程联营协议3篇
- 二零二五年度大货车司机职业风险防范合同范本3篇
- 网络安全文化传播与防范意识强化研究
- 2025版实训基地学生实习就业安全保障合同2篇
- 小学教育中的数学创新思维培养
- 清远广东清远阳山县纪委监委招聘政府购买服务人员笔试历年参考题库附带答案详解
- 杭州浙江杭州市湖墅学校编外教师招聘笔试历年参考题库附带答案详解
- 二零二五年度智能家具制造承包合作协议3篇
- 2025年牛津译林版选择性必修1地理下册月考试卷
- 肩袖损伤的护理查房课件
- 2023届北京市顺义区高三二模数学试卷
- 公司差旅费报销单
- 梁山伯与祝英台小提琴谱乐谱
- 我国全科医生培训模式
- 2021年上海市杨浦区初三一模语文试卷及参考答案(精校word打印版)
- 八年级上册英语完形填空、阅读理解100题含参考答案
- 八年级物理下册功率课件
- DBJ51-T 188-2022 预拌流态固化土工程应用技术标准
- 《长津湖》电影赏析PPT
- 销售礼仪培训PPT
评论
0/150
提交评论